Lösung 1.3:6e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Both 125 and 625 can be written as powers of 5,
Both 125 and 625 can be written as powers of 5,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
125 &= 5\cdot 5 = 5\cdot 5\cdot 5 = 5^{3},\\[5pt]
125 &= 5\cdot 5 = 5\cdot 5\cdot 5 = 5^{3},\\[5pt]
625 &= 5\cdot 125 = 5\cdot 5^{3} = 5^{4},
625 &= 5\cdot 125 = 5\cdot 5^{3} = 5^{4},
Zeile 8: Zeile 8:
and this means that
and this means that
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
125^{\frac{1}{2}} &= \bigl(5^{3}\bigr)^{\frac{1}{2}} = 5^{3\cdot\frac{1}{2}} = 5^{\frac{3}{2}},\\[5pt]
125^{\frac{1}{2}} &= \bigl(5^{3}\bigr)^{\frac{1}{2}} = 5^{3\cdot\frac{1}{2}} = 5^{\frac{3}{2}},\\[5pt]
625 &= \bigl(5^{4}\bigr)^{\frac{1}{3}} = 5^{4\cdot\frac{1}{3}} = 5^{\frac{4}{3}}\,\textrm{.}
625 &= \bigl(5^{4}\bigr)^{\frac{1}{3}} = 5^{4\cdot\frac{1}{3}} = 5^{\frac{4}{3}}\,\textrm{.}

Version vom 08:19, 22. Okt. 2008

Both 125 and 625 can be written as powers of 5,

\displaystyle \begin{align}

125 &= 5\cdot 5 = 5\cdot 5\cdot 5 = 5^{3},\\[5pt] 625 &= 5\cdot 125 = 5\cdot 5^{3} = 5^{4}, \end{align}

and this means that

\displaystyle \begin{align}

125^{\frac{1}{2}} &= \bigl(5^{3}\bigr)^{\frac{1}{2}} = 5^{3\cdot\frac{1}{2}} = 5^{\frac{3}{2}},\\[5pt] 625 &= \bigl(5^{4}\bigr)^{\frac{1}{3}} = 5^{4\cdot\frac{1}{3}} = 5^{\frac{4}{3}}\,\textrm{.} \end{align}

From this, we see that \displaystyle 125^{\frac{1}{2}} > 625^{\frac{1}{3}}, since the exponent 3/2 is bigger than 4/3 and the base 5 is bigger than 1.