Lösung 1.3:6d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
One way to compare the two numbers is to rewrite the power <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> so that it has the same exponent as <math>400^{\frac{1}{3}}</math>, | One way to compare the two numbers is to rewrite the power <math>\bigl(5^{\frac{1}{3}}\bigr)^{4}</math> so that it has the same exponent as <math>400^{\frac{1}{3}}</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,</math>.}} |
Now, we see that <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, because <math>625 > 400</math> and the exponent 1/3 is positive. | Now, we see that <math>\bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}</math>, because <math>625 > 400</math> and the exponent 1/3 is positive. |
Version vom 08:19, 22. Okt. 2008
One way to compare the two numbers is to rewrite the power \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},
\displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} = 5^{\frac{1}{3}\cdot 4} = 5^{4\cdot\frac{1}{3}} = \bigl(5^{4}\bigr)^{\frac{1}{3}} = \bigl(5\cdot 5\cdot 5\cdot 5\bigr)^{\frac{1}{3}} = 625^{\frac{1}{3}}\,. |
Now, we see that \displaystyle \bigl(5^{\frac{1}{3}}\bigr)^{4} > 400^{\frac{1}{3}}, because \displaystyle 625 > 400 and the exponent 1/3 is positive.