Lösung 3.1:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we multiply the top and bottom of the fraction by
+
If we multiply the top and bottom of the fraction by <math>\sqrt{12}</math>, the new denominator will be <math>\sqrt{12}\cdot\sqrt{12} = 12</math> and we will get rid of the root sign in the denominator
-
<math>\sqrt{12}</math>, the new denominator will be
+
-
<math>\sqrt{12}\centerdot \sqrt{12}=12</math>
+
-
and we will get rid of the root sign in the denominator:
+
 +
{{Displayed math||<math>\frac{2}{\sqrt{12}} = \frac{2}{\sqrt{12}}\cdot \frac{\sqrt{12}}{\sqrt{12}} = \frac{2\sqrt{12}}{12} = \frac{2\sqrt{12}}{2\cdot 6} = \frac{\sqrt{12}}{6}\,\textrm{.}</math>}}
-
<math>\frac{2}{\sqrt{12}}=\frac{2}{\sqrt{12}}\centerdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{2\sqrt{12}}{12}=\frac{2\sqrt{12}}{2\centerdot 6}=\frac{\sqrt{12}}{6}</math>
+
This expression can be simplified even further if we write <math>12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3</math> and take <math>2^2</math> out from under the root, we get
-
 
+
{{Displayed math||<math>\frac{\sqrt{12}}{6} = \frac{2\sqrt{3}}{6} = \frac{2\sqrt{3}}{2\cdot 3} = \frac{\sqrt{3}}{3}\,\textrm{.}</math>}}
-
This expression can be simplified even further if we write
+
-
<math>\text{12}=\text{2}\centerdot \text{6}=\text{2}\centerdot \text{2}\centerdot \text{3}=\text{2}^{\text{2}}\centerdot \text{3 }</math>
+
-
and take
+
-
<math>\text{2}^{\text{2}}</math>
+
-
out from under the root, We get
+
-
 
+
-
 
+
-
<math>\frac{\sqrt{12}}{6}=\frac{2\sqrt{3}}{6}=\frac{2\sqrt{3}}{2\centerdot 3}=\frac{\sqrt{3}}{3}.</math>
+

Version vom 11:18, 30. Sep. 2008

If we multiply the top and bottom of the fraction by \displaystyle \sqrt{12}, the new denominator will be \displaystyle \sqrt{12}\cdot\sqrt{12} = 12 and we will get rid of the root sign in the denominator

Vorlage:Displayed math

This expression can be simplified even further if we write \displaystyle 12 = 2\cdot 6 = 2\cdot 2\cdot 3 = 2^2\cdot 3 and take \displaystyle 2^2 out from under the root, we get

Vorlage:Displayed math