Lösung 1.3:5b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we use <math>4 = 2\cdot 2 = 2^{2}</math>, the power rules give | If we use <math>4 = 2\cdot 2 = 2^{2}</math>, the power rules give | ||
- | {{ | + | {{Abgesetzte Formel||<math>4^{-\frac{1}{2}} = \bigl( 2^{2}\bigr)^{-\frac{1}{2}} = 2^{2\cdot (-\frac{1}{2})} = 2^{-1} = \frac{1}{2}\,</math>.}} |
Version vom 08:18, 22. Okt. 2008
If we use \displaystyle 4 = 2\cdot 2 = 2^{2}, the power rules give
\displaystyle 4^{-\frac{1}{2}} = \bigl( 2^{2}\bigr)^{-\frac{1}{2}} = 2^{2\cdot (-\frac{1}{2})} = 2^{-1} = \frac{1}{2}\,. |