Lösung 3.1:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
By writing
+
By writing <math>0\textrm{.}027</math> as <math>27\cdot 10^{-3}</math>, where
-
<math>0.0\text{27 }</math>
+
<math>27 = 3\cdot 3\cdot 3 = 3^3</math> and <math>10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3</math> we see that
-
as
+
-
<math>\text{27}\cdot \text{1}0^{-\text{3}}</math>, where
+
-
<math>\text{27}=\text{3}\cdot \text{3}\cdot \text{3}=\text{3}^{\text{3}}</math>
+
-
and
+
-
<math>10^{-3}=\left( 10^{-1} \right)^{3}=0.1^{3}</math>
+
-
we see that
+
 +
{{Displayed math||<math>\begin{align}
 +
\sqrt[3]{0\textrm{.}027} &= \sqrt[3]{27\cdot 10^{-3}} = \sqrt[3]{27}\cdot\sqrt[3]{10^{-3}} = \sqrt[3]{3^{3}}\cdot\sqrt[3]{0\textrm{.}1^3}\\[5pt]
 +
&= 3\cdot 0\textrm{.}1 = 0\textrm{.}3\,\textrm{,}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
where we have used <math>\sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}</math>
-
& \sqrt[3]{0.027}=\sqrt[3]{27\centerdot 10^{-3}}=\sqrt[3]{27}\centerdot \sqrt[3]{10^{-3}}=\sqrt[3]{3^{3}}\centerdot \sqrt[3]{0.1^{3}} \\
+
-
& =3\centerdot 0.1=0.3 \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
where we have used
+
-
<math>\sqrt[3]{a^{3}}=\left( a^{3} \right)^{\frac{1}{3}}=a^{3\centerdot \frac{1}{3}}=a^{1}=a</math>
+

Version vom 10:54, 30. Sep. 2008

By writing \displaystyle 0\textrm{.}027 as \displaystyle 27\cdot 10^{-3}, where \displaystyle 27 = 3\cdot 3\cdot 3 = 3^3 and \displaystyle 10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3 we see that

Vorlage:Displayed math

where we have used \displaystyle \sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}