Lösung 3.1:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | By writing | + | By writing <math>0\textrm{.}027</math> as <math>27\cdot 10^{-3}</math>, where |
- | <math> | + | <math>27 = 3\cdot 3\cdot 3 = 3^3</math> and <math>10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3</math> we see that |
- | as | + | |
- | <math> | + | |
- | <math> | + | |
- | and | + | |
- | <math>10^{-3}= | + | |
- | we see that | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \sqrt[3]{0\textrm{.}027} &= \sqrt[3]{27\cdot 10^{-3}} = \sqrt[3]{27}\cdot\sqrt[3]{10^{-3}} = \sqrt[3]{3^{3}}\cdot\sqrt[3]{0\textrm{.}1^3}\\[5pt] | ||
+ | &= 3\cdot 0\textrm{.}1 = 0\textrm{.}3\,\textrm{,} | ||
+ | \end{align}</math>}} | ||
- | + | where we have used <math>\sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}</math> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | where we have used | + | |
- | <math>\sqrt[3]{a^{3}}=\ | + |
Version vom 10:54, 30. Sep. 2008
By writing \displaystyle 0\textrm{.}027 as \displaystyle 27\cdot 10^{-3}, where \displaystyle 27 = 3\cdot 3\cdot 3 = 3^3 and \displaystyle 10^{-3} = (10^{-1})^{3} = 0\textrm{.}1^3 we see that
where we have used \displaystyle \sqrt[3]{a^{3}} = \bigl(a^{3}\bigr)^{1/3} = a^{3\cdot \frac{1}{3}} = a^{1} = a\,\textrm{.}