Lösung 3.1:4a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | The decimal number | + | The decimal number <math>0\textrm{.}16</math> can also be written as <math>16\cdot 10^{-2}</math> and then it is easier to see that, since <math>16 = 4\cdot 4 = 4^2</math> and <math>10^{-2} = (10^{-1})^2 = 0\textrm{.}1^2</math>, |
- | <math>0 | + | |
- | can also be written as | + | |
- | <math> | + | |
- | and then it is easier to see that, since | + | |
- | <math> | + | |
- | and | + | |
- | <math>10^{-2}= | + | |
+ | {{Displayed math||<math>\begin{align} | ||
+ | \sqrt{0\textrm{.}16} &= \sqrt{16\cdot 10^{-2}} = \sqrt{16}\cdot \sqrt{10^{-2}} = \sqrt{4^2}\cdot \sqrt{0\textrm{.}1^2}\\[5pt] | ||
+ | &= 4\cdot 0\textrm{.}1 = 0\textrm{.}4\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
- | + | Another alternative is, of course, to see directly that <math>0\textrm{.}16 = 0\textrm{.}4\cdot 0\textrm{.}4 = 0\textrm{.}4^2</math>, and then that <math>\sqrt{0\textrm{.}16} = \sqrt{0\textrm{.}4^2} = 0\textrm{.}4\,\textrm{.}</math> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | Another alternative is, of course, to see directly | + | |
- | <math>0.16=0.4\ | + | |
- | <math>\sqrt{0.16}=\sqrt{0.4^ | + |
Version vom 10:47, 30. Sep. 2008
The decimal number \displaystyle 0\textrm{.}16 can also be written as \displaystyle 16\cdot 10^{-2} and then it is easier to see that, since \displaystyle 16 = 4\cdot 4 = 4^2 and \displaystyle 10^{-2} = (10^{-1})^2 = 0\textrm{.}1^2,
Another alternative is, of course, to see directly that \displaystyle 0\textrm{.}16 = 0\textrm{.}4\cdot 0\textrm{.}4 = 0\textrm{.}4^2, and then that \displaystyle \sqrt{0\textrm{.}16} = \sqrt{0\textrm{.}4^2} = 0\textrm{.}4\,\textrm{.}