Lösung 1.2:2d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
If we divide up the denominators into their smallest possible integer factors, | If we divide up the denominators into their smallest possible integer factors, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
45&=5\cdot 9=5\cdot 3\cdot 3\,, \\ | 45&=5\cdot 9=5\cdot 3\cdot 3\,, \\ | ||
75&=3\cdot 25=3\cdot 5\cdot 5\,, \\ | 75&=3\cdot 25=3\cdot 5\cdot 5\,, \\ | ||
Zeile 8: | Zeile 8: | ||
the expression can be written as | the expression can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{2}{3\cdot 3\cdot 5}+\frac{1}{3\cdot 5\cdot 5}</math>}} |
and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 | and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 | ||
and the second by 3, the result is the lowest possible denominator | and the second by 3, the result is the lowest possible denominator | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot | \frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot | ||
\frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5} | \frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5} |
Version vom 08:14, 22. Okt. 2008
If we divide up the denominators into their smallest possible integer factors,
\displaystyle \begin{align}
45&=5\cdot 9=5\cdot 3\cdot 3\,, \\ 75&=3\cdot 25=3\cdot 5\cdot 5\,, \\ \end{align} |
the expression can be written as
\displaystyle \frac{2}{3\cdot 3\cdot 5}+\frac{1}{3\cdot 5\cdot 5} |
and then we see that the denominators have \displaystyle 3\cdot 5 as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 and the second by 3, the result is the lowest possible denominator
\displaystyle \begin{align}
\frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot \frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5} +\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt] &= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\ \end{align} |
The lowest common denominator is 225.