Lösung 1.2:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
We divide up the two numerators into the smallest possible integer factors,
We divide up the two numerators into the smallest possible integer factors,
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
12 &= 2\cdot 6 = 2\cdot 2\cdot 3\,,\\
-
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\
+
14 &= 2\cdot 7\,\textrm{.} \\
-
& 14=2\centerdot 7 \\
+
\end{align}</math>}}
-
\end{align}</math>
+
The expression can thus be written as
The expression can thus be written as
 +
{{Displayed math||
 +
<math>\frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\,</math>.}}
-
<math>\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}</math>
+
Here, we see that the denominators have a factor 2 in common. We multiply the top and bottom of the first fraction by 7 and the second by <math>2\cdot 3</math>
-
 
+
i.e. we leave out the common factor 2, so that the fractions have the lowest common denominator <math>2\cdot 2\cdot 3\cdot 7</math>,
-
Here, we see that the denominators have a factor
+
-
<math>2</math>
+
-
in common. We multiply the top and bottom of the first fraction by
+
-
<math>7</math>
+
-
and the second by
+
-
<math>2\centerdot 3</math>
+
-
i.e. we leave out the common factor
+
-
<math>2</math>, so that the fractions have the lowest common denominator
+
-
<math>2\centerdot 2\centerdot 3\centerdot 7</math>,
+
-
 
+
-
<math>\frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}</math>
+
{{Displayed math||<math>\begin{align}
 +
\frac{1}{12}-\frac{1}{14} &= \frac{1}{2\cdot 2\cdot 3}-\frac{1}{2\cdot 7}\\[5pt]
 +
&= \frac{1}{2\cdot 2\cdot 3}\cdot \frac{7}{7}-\frac{1}{2\cdot 7}\cdot \frac{2\cdot 3}{2\cdot 3}\\[5pt]
 +
&= \frac{7}{2\cdot 2\cdot 3\cdot 7} - \frac{2\cdot 3}{2\cdot 2\cdot 3\cdot 7}\\[5pt]
 +
&= \frac{7}{84} - \frac{6}{84}\,\textrm{.}
 +
\end{align}</math>}}
-
The lowest common denominator is
+
The lowest common denominator is 84.
-
<math>84</math>.
+

Version vom 12:15, 22. Sep. 2008

We divide up the two numerators into the smallest possible integer factors,

Vorlage:Displayed math

The expression can thus be written as

Vorlage:Displayed math

Here, we see that the denominators have a factor 2 in common. We multiply the top and bottom of the first fraction by 7 and the second by \displaystyle 2\cdot 3 i.e. we leave out the common factor 2, so that the fractions have the lowest common denominator \displaystyle 2\cdot 2\cdot 3\cdot 7,

Vorlage:Displayed math

The lowest common denominator is 84.