Lösung 2.3:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
The equation can be written in normalized form (i.e. the coefficient in front of
+
The equation can be written in normalized form (i.e. the coefficient in front of ''x''² is 1) by dividing both sides by 4,
-
<math>x^{\text{2}}</math>
+
-
is
+
-
<math>1</math>
+
-
) by dividing both sides by
+
-
<math>4</math>,
+
 +
{{Displayed math||<math>x^{2}-7x+\frac{13}{4}=0\,\textrm{.}</math>}}
-
<math>x^{2}-7x+\frac{13}{4}=0</math>
+
Complete the square on the left-hand side,
-
 
+
{{Displayed math||<math>\begin{align}
-
Completing the square on the left-hand side,
+
x^{2}-7x+\frac{13}{4}
-
 
+
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \Bigl(\frac{7}{2}\Bigr)^{2} + \frac{13}{4}\\[5pt]
-
 
+
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{49}{4} + \frac{13}{4}\\[5pt]
-
<math>\begin{align}
+
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - \frac{36}{4}\\[5pt]
-
& x^{2}-7x+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+\frac{13}{4}=\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{13}{4} \\
+
&= \Bigl(x-\frac{7}{2}\Bigr)^{2} - 9\,\textrm{.}
-
& =\left( x-\frac{7}{2} \right)^{2}-\frac{36}{4}=\left( x-\frac{7}{2} \right)^{2}-9 \\
+
\end{align}</math>}}
-
\end{align}</math>
+
The equation can therefore be written as
The equation can therefore be written as
-
 
+
{{Displayed math||<math>\Bigl(x-\frac{7}{2}\Bigr)^{2} - 9 = 0\,,</math>}}
-
<math>\left( x-\frac{7}{2} \right)^{2}-9=0</math>
+
and taking the square root gives the solutions as
and taking the square root gives the solutions as
 +
:*<math>x-\frac{7}{2}=\sqrt{9}=3\,,\quad</math> i.e. <math>x=\frac{7}{2}+3=\frac{13}{2},</math>
-
<math>x-\frac{7}{2}=\sqrt{9}=3</math>
+
:*<math>x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad</math> i.e. <math>x=\frac{7}{2}-3=\frac{1}{2}.</math>
-
i.e.
+
-
<math>x=\frac{7}{2}+3=\frac{13}{2},</math>
+
-
 
+
-
 
+
-
<math>x-\frac{7}{2}=-\sqrt{9}=-3</math>
+
-
i.e.
+
-
<math>x=\frac{7}{2}-3=\frac{1}{2}.</math>
+
-
 
+
-
 
+
-
As an extra check, we substitute x=1/2 and x=13/2 into the equation:
+
 +
As an extra check, we substitute ''x''&nbsp;=&nbsp;1/2 and ''x''&nbsp;=&nbsp;13/2 into the equation:
-
<math>x=\text{1}/\text{2}</math>: LHS
+
:*''x''&nbsp;=&nbsp;1/2: <math>\ \text{LHS} = 4\cdot\Bigl(\frac{1}{2}\Bigr)^{2} - 28\cdot\frac{1}{2}+13 = 4\cdot\frac{1}{4}-14+13 = 1-14+13 = \text{RHS,}</math>
-
<math>=4\centerdot \left( \frac{1}{2} \right)^{2}-28\centerdot \frac{1}{2}+13=4\centerdot \frac{1}{4}-14+13=1-14+13=</math>
+
-
RHS
+
-
<math>x=\text{13}/\text{2}</math>: LHS
+
:*''x''&nbsp;=&nbsp;13/2: <math>\ \text{LHS} = 4\cdot\Bigl(\frac{13}{2}\Bigr)^{2} - 28\cdot\frac{13}{2}+13 = 4\cdot\frac{169}{4} - 14\cdot 13 + 13 = 169 - 182 + 13 = \text{RHS.}</math>
-
<math>=4\centerdot \left( \frac{13}{2} \right)^{2}-28\centerdot \frac{13}{2}+13=4\centerdot \frac{169}{4}-14\centerdot 13+13=169-182+13=</math>
+
-
RHS
+

Version vom 07:55, 29. Sep. 2008

The equation can be written in normalized form (i.e. the coefficient in front of x² is 1) by dividing both sides by 4,

Vorlage:Displayed math

Complete the square on the left-hand side,

Vorlage:Displayed math

The equation can therefore be written as

Vorlage:Displayed math

and taking the square root gives the solutions as

  • \displaystyle x-\frac{7}{2}=\sqrt{9}=3\,,\quad i.e. \displaystyle x=\frac{7}{2}+3=\frac{13}{2},
  • \displaystyle x-\frac{7}{2}=-\sqrt{9}=-3\,,\quad i.e. \displaystyle x=\frac{7}{2}-3=\frac{1}{2}.

As an extra check, we substitute x = 1/2 and x = 13/2 into the equation:

  • x = 1/2: \displaystyle \ \text{LHS} = 4\cdot\Bigl(\frac{1}{2}\Bigr)^{2} - 28\cdot\frac{1}{2}+13 = 4\cdot\frac{1}{4}-14+13 = 1-14+13 = \text{RHS,}
  • x = 13/2: \displaystyle \ \text{LHS} = 4\cdot\Bigl(\frac{13}{2}\Bigr)^{2} - 28\cdot\frac{13}{2}+13 = 4\cdot\frac{169}{4} - 14\cdot 13 + 13 = 169 - 182 + 13 = \text{RHS.}