Lösung 1.2:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K
Zeile 8: Zeile 8:
the expression can be written as
the expression can be written as
-
{{Displayed math||<math>\frac{1}{5\cdot 3\cdot 3}+\frac{1}{3\cdot 5\cdot 5}</math>}}
+
{{Displayed math||<math>\frac{2}{3\cdot 3\cdot 5}+\frac{1}{3\cdot 5\cdot 5}</math>}}
and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5
and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5
Zeile 14: Zeile 14:
{{Displayed math||<math>\begin{align}
{{Displayed math||<math>\begin{align}
-
\frac{2}{5\cdot 3\cdot 3}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot
+
\frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot
-
\frac{3}{3} &=\frac{2}{5\cdot 3\cdot 3\cdot 5}
+
\frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5}
+\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt]
+\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt]
&= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\
&= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\

Version vom 12:21, 22. Sep. 2008

If we divide up the denominators into their smallest possible integer factors,

Vorlage:Displayed math

the expression can be written as

Vorlage:Displayed math

and then we see that the denominators have \displaystyle 3\cdot 5 as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 and the second by 3, the result is the lowest possible denominator

Vorlage:Displayed math

The lowest common denominator is 225.