Lösung 1.2:1e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The first step is to expand the fractions so that they have a common denominator, | The first step is to expand the fractions so that they have a common denominator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{8\cdot 4\cdot 3}{7\cdot 4\cdot 3}+\frac{3\cdot 7\cdot 3}{4\cdot 7\cdot 3}-\frac{4\cdot 7\cdot 4}{3\cdot 7\cdot 4}=\frac{96}{84}+\frac{63}{84}-\frac{112}{84}\,</math>.}} |
After that, the expression can be calculated by adding and subtracting the numerators | After that, the expression can be calculated by adding and subtracting the numerators | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{96}{84}+\frac{63}{84}-\frac{112}{84}=\frac{96+63-112}{84}=\frac{47}{84}\,</math>.}} |
Version vom 08:13, 22. Okt. 2008
The first step is to expand the fractions so that they have a common denominator,
\displaystyle \frac{8\cdot 4\cdot 3}{7\cdot 4\cdot 3}+\frac{3\cdot 7\cdot 3}{4\cdot 7\cdot 3}-\frac{4\cdot 7\cdot 4}{3\cdot 7\cdot 4}=\frac{96}{84}+\frac{63}{84}-\frac{112}{84}\,. |
After that, the expression can be calculated by adding and subtracting the numerators
\displaystyle \frac{96}{84}+\frac{63}{84}-\frac{112}{84}=\frac{96+63-112}{84}=\frac{47}{84}\,. |