Lösung 2.2:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
Let's write down the equation for a straight line as
Let's write down the equation for a straight line as
 +
{{Displayed math||<math>y=kx+m\,,</math>}}
-
<math>y=kx+m</math>
+
where ''k'' and ''m'' are constants which we shall determine.
 +
Since the points (2,3) and (3,0) should lie on the line, they must also satisfy the equation of the line,
-
where
+
{{Displayed math||<math>3=k\cdot 2+m\qquad\text{and}\qquad 0=k\cdot 3+m\,\textrm{.}</math>}}
-
<math>k</math>
+
-
and
+
-
<math>m</math>
+
-
are constants which we shall determine.
+
-
Since the points
+
If we take the difference between the equations, ''m'' disappears and we can work out the slope ''k'',
-
<math>\left( 2 \right., \left. 3 \right)</math>
+
-
and
+
-
<math>\left( 3 \right., \left. 0 \right)</math>
+
-
should lie on the line, they must also satisfy the equation of the line,
+
 +
{{Displayed math||<math>\begin{align}
 +
3-0 &= k\cdot 2+m-(k\cdot 3+m)\,,\\[5pt]
 +
3 &= -k\,\textrm{.}
 +
\end{align}</math>}}
-
<math>3=k\centerdot 2+m</math>
+
Substituting this into the equation <math>0=k\centerdot 3+m</math> then gives us a value for ''m'',
-
and
+
-
<math>0=k\centerdot 3+m</math>
+
 +
{{Displayed math||<math>m=-3k=-3\cdot (-3)=9\,\textrm{.}</math>}}
-
If we take the difference between the equations,
+
The equation of the line is thus <math>y=-3x+9</math>.
-
<math>m</math>
+
-
disappears and we can work out the gradient
+
-
<math>k</math>,
+
-
<math>3-0=k\centerdot 2+m-\left( k\centerdot 3+m \right)</math>
+
<center>[[Image:S1_2_2_5_a.jpg]]</center>
-
<math>3=-k</math>
+
Note. To be completely certain that we have calculated correctly, we check that the points (2,3) and (3,0) satisfy the equation of the line:
-
Substituting this into the equation
+
:*(''x'',''y'')&nbsp;=&nbsp;(2,3): <math>\text{LHS} = 3\ </math> and <math>\ \text{RHS} = -3\cdot 2+9 = 3\,</math>.
-
<math>0=k\centerdot 3+m</math>
+
:*(''x'',''y'')&nbsp;=&nbsp;(3,0): <math>\text{LHS} = 0\ </math> and <math>\ \text{LHS} = -3\cdot 3+9 = 0\,</math>.
-
then gives us a value for
+
-
<math>m</math>,
+
-
 
+
-
 
+
-
<math>m=-3k=-3\centerdot \left( -3 \right)=9</math>
+
-
 
+
-
 
+
-
The equation of the line is thus
+
-
<math>y=-3x+9</math>.
+
-
 
+
-
 
+
-
 
+
-
NOTE: To be completely certain that we have calculated correctly, we check that the points
+
-
<math>\left( 2 \right., \left. 3 \right)</math>
+
-
and
+
-
<math>\left( 3 \right., \left. 0 \right)</math>
+
-
satisfy the equation of the line:
+
-
 
+
-
<math>\left( x \right., \left. y \right)=\left( 2 \right., \left. 3 \right)</math>: LHS=
+
-
<math>3</math>
+
-
and RHS=
+
-
<math>-3\centerdot 2+9=3</math>
+
-
 
+
-
 
+
-
<math>\left( x \right., \left. y \right)=\left( 3 \right., \left. 0 \right)</math>: LHS=
+
-
<math>0</math>
+
-
and LHS=
+
-
<math>-3\centerdot 3+9=0</math>
+
-
 
+
-
 
+
-
 
+
-
{{NAVCONTENT_START}}
+
-
<!--<center> [[Image:2_2_5a-1(2).gif]] </center>-->
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
 
+
-
[[Image:S1_2_2_5_a.jpg]]
+
-
<!--<center> [[Image:2_2_5a-2(2).gif]] </center>-->
+
-
{{NAVCONTENT_STOP}}
+

Version vom 11:55, 24. Sep. 2008

Let's write down the equation for a straight line as

Vorlage:Displayed math

where k and m are constants which we shall determine.

Since the points (2,3) and (3,0) should lie on the line, they must also satisfy the equation of the line,

Vorlage:Displayed math

If we take the difference between the equations, m disappears and we can work out the slope k,

Vorlage:Displayed math

Substituting this into the equation \displaystyle 0=k\centerdot 3+m then gives us a value for m,

Vorlage:Displayed math

The equation of the line is thus \displaystyle y=-3x+9.


Image:S1_2_2_5_a.jpg


Note. To be completely certain that we have calculated correctly, we check that the points (2,3) and (3,0) satisfy the equation of the line:

  • (x,y) = (2,3): \displaystyle \text{LHS} = 3\ and \displaystyle \ \text{RHS} = -3\cdot 2+9 = 3\,.
  • (x,y) = (3,0): \displaystyle \text{LHS} = 0\ and \displaystyle \ \text{LHS} = -3\cdot 3+9 = 0\,.