Lösung 2.2:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Move
+
Move ''x'' to the left-hand side by subtracting 2''x'' from both sides,
-
<math>x</math>
+
-
to the left-hand side by subtracting
+
-
<math>2x</math>
+
-
from both sides,
+
-
 
+
-
 
+
-
<math>5x+7-2x=2x-6-2x</math>
+
 +
{{Displayed math||<math>5x+7-2x=2x-6-2x</math>}}
which gives
which gives
 +
{{Displayed math||<math>3x+7=-6\,\textrm{.}</math>}}
-
<math>3x+7=-6</math>
+
Subtract 7 from both sides,
-
 
+
-
 
+
-
Subtract
+
-
<math>7</math>
+
-
from both sides,
+
-
 
+
-
 
+
-
<math>3x+7-7=-6-7</math>
+
-
 
+
-
 
+
-
so that the term
+
-
<math>3x</math>
+
-
alone remains on the left-hand side
+
-
 
+
-
 
+
-
<math>3x=-13</math>
+
-
 
+
-
 
+
-
Then, divide both sides by
+
-
<math>3</math>
+
 +
{{Displayed math||<math>3x+7-7=-6-7</math>}}
 +
so that the term 3''x'' alone remains on the left-hand side
-
<math>\frac{3x}{3}=-\frac{13}{3}</math>
+
{{Displayed math||<math>3x=-13\,\textrm{.}</math>}}
 +
Then, divide both sides by 3,
-
to get x:
+
{{Displayed math||<math>\frac{3x}{3}=-\frac{13}{3}\,\textrm{,}</math>}}
 +
to get x,
-
<math>x=-\frac{13}{3}</math>
+
{{Displayed math||<math>x=-\frac{13}{3}\,\textrm{.}</math>}}

Version vom 13:23, 23. Sep. 2008

Move x to the left-hand side by subtracting 2x from both sides,

Vorlage:Displayed math

which gives

Vorlage:Displayed math

Subtract 7 from both sides,

Vorlage:Displayed math

so that the term 3x alone remains on the left-hand side

Vorlage:Displayed math

Then, divide both sides by 3,

Vorlage:Displayed math

to get x,

Vorlage:Displayed math