Lösung 2.1:7a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | If we multiply the top and bottom of the first fraction by | + | If we multiply the top and bottom of the first fraction by <math>x+5</math> and the second by <math>x+3</math>, then they will both have the same denominator and we can work out the expression by subtracting the numerators |
- | <math>x+5</math> | + | |
- | and the second by | + | |
- | <math>x+3</math>, then they will both have the same | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{2}{x+3}-\frac{2}{x+5} &= \frac{2}{x+3}\cdot \frac{x+5}{x+5}-\frac{2}{x+5}\cdot \frac{x+3}{x+3}\\[7pt] |
- | + | &= \frac{2(x+5)-2(x+3)}{(x+3)(x+5)}\\[5pt] | |
- | & =\frac{2 | + | &= \frac{2x+10-2x-6}{(x+3)(x+5)}\\[5pt] |
- | \end{align}</math> | + | &= \frac{4}{(x+3)(x+5)}\,\textrm{.} |
+ | \end{align}</math>}} |
Version vom 11:55, 23. Sep. 2008
If we multiply the top and bottom of the first fraction by \displaystyle x+5 and the second by \displaystyle x+3, then they will both have the same denominator and we can work out the expression by subtracting the numerators