Lösung 2.1:6c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
- | Because the | + | Because the denominators are <math>a^{2}-ab = a(a-b)</math> and <math>a-b</math>, both terms will have a common denominator <math>a(a-b)</math> if the top and bottom of the second term are multiplied by <math>a</math>, |
- | <math>a^{2}-ab=a | + | |
- | and | + | |
- | <math>a-b</math>, both terms will have a common denominator | + | |
- | <math>a | + | |
- | if the top and bottom of the second term are multiplied by | + | |
- | <math>a</math> | + | |
- | + | {{Displayed math||<math>\begin{align} | |
- | <math>\begin{align} | + | \frac{2a+b}{a^{2}-b}-\frac{2}{a-b} &= \frac{2a+b}{a(a-b)}-\frac{2}{a-b}\cdot\frac{a}{a}\\[5pt] |
- | + | &= \frac{2a+b-2a}{a(a-b)}\\[5pt] | |
- | & =\frac{2a+b-2a}{a | + | &= \frac{b}{a(a-b)}\,\textrm{.} |
- | \end{align}</math> | + | \end{align}</math>}} |
Version vom 11:39, 23. Sep. 2008
Because the denominators are \displaystyle a^{2}-ab = a(a-b) and \displaystyle a-b, both terms will have a common denominator \displaystyle a(a-b) if the top and bottom of the second term are multiplied by \displaystyle a,