Lösung 2.1:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3a.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_3a.gif]] </center> | + | <!--center> [[Bild:2_1_3a.gif]] </center--> |
+ | If we look at the expression, we see that it can be written as <math>x^2-6^2</math> and can therefore be factorized using the conjugate rule. | ||
+ | |||
+ | :<math> x^2-36=x^2-6^2=(x+6)(x-6).</math> | ||
+ | |||
+ | Because the factors <math> x+6 </math> and <math> x-6 </math> are linear expressions, they cannot be factorized any further (as polynomial factors). | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 13:01, 13. Aug. 2008
If we look at the expression, we see that it can be written as \displaystyle x^2-6^2 and can therefore be factorized using the conjugate rule.
- \displaystyle x^2-36=x^2-6^2=(x+6)(x-6).
Because the factors \displaystyle x+6 and \displaystyle x-6 are linear expressions, they cannot be factorized any further (as polynomial factors).