Lösung 1.3:4e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Because
+
Because <math>5^{9} = 5^{8+1} = 5^{8}\cdot 5^{1} = 5^{8}\cdot 5</math>, the two terms inside the brackets have <math>5^{8}</math> as a common factor and can therefore be taken outside the bracket
-
<math>5^{9}=5^{8+1}=5^{8}\centerdot 5^{1}=5^{8}\centerdot 5</math>,
+
-
the two terms inside the brackets have
+
-
<math>5^{8}</math>
+
-
as a common factor
+
-
and can therefore be taken outside the bracket.
+
 +
{{Displayed math||<math>\begin{align}
 +
\bigl(5^{8}+5^{9}\bigr)^{-1} &= \bigl(5^{8}+5^{8}\cdot 5\bigr)^{-1} = \bigl(5^{8}\cdot (1+5)\bigr)^{-1}\\[5pt]
 +
&= \bigl(5^{8}\cdot 6\bigr)^{-1} = 5^{8\cdot (-1)}\cdot 6^{-1} = 5^{-8}\cdot 6^{-1}.
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Furthermore, <math>625 = 5\cdot 125 = 5\cdot 5\cdot 25 = 5\cdot 5\cdot 5\cdot 5 = 5^{4}</math> and we obtain
-
& \left( 5^{8}+5^{9} \right)^{-1}=\left( 5^{8}+5^{8}\centerdot 5 \right)^{-1}=\left( 5^{8}\centerdot \left( 1+5 \right) \right)^{-1} \\
+
-
& \\
+
-
& =\left( 5^{8}\centerdot 6 \right)^{-1}=5^{8\centerdot \left( -1 \right)}\centerdot 6^{-1}=5^{-8}\centerdot 6^{-1}. \\
+
-
\end{align}</math>
+
-
 
+
-
Furthermore,
+
-
<math>625=5\centerdot 125=5\centerdot 5\centerdot 25=5\centerdot 5\centerdot 5\centerdot 5=5^{4}</math>
+
-
and we obtain
+
-
 
+
 +
{{Displayed math||
<math>\begin{align}
<math>\begin{align}
-
& 625\centerdot \left( 5^{8}+5^{9} \right)^{-1}=5^{4}\centerdot 5^{-8}\centerdot 6^{-1}=5^{4-8}\centerdot 6^{-1} \\
+
625\cdot \bigl(5^{8}+5^{9}\bigr)^{-1} &= 5^{4}\cdot 5^{-8}\cdot 6^{-1} = 5^{4-8}\cdot 6^{-1}\\[5pt]
-
& \\
+
&= 5^{-4}\cdot 6^{-1} = \frac{1}{5^{4}}\cdot \frac{1}{6}\\[5pt]
-
& =5^{-4}\centerdot 6^{-1}=\frac{1}{5^{4}}\centerdot \frac{1}{6}=\frac{1}{5^{4}\centerdot 6}=\frac{1}{5\centerdot 5\centerdot 5\centerdot 5\centerdot 6} \\
+
&= \frac{1}{5^{4}\cdot 6} = \frac{1}{5\cdot 5\cdot 5\cdot 5\cdot 6}\\[5pt]
-
& \\
+
&= \frac{1}{3750}\,\textrm{.}
-
& =\frac{1}{3750} \\
+
\end{align}</math>}}
-
\end{align}</math>
+

Version vom 14:19, 22. Sep. 2008

Because \displaystyle 5^{9} = 5^{8+1} = 5^{8}\cdot 5^{1} = 5^{8}\cdot 5, the two terms inside the brackets have \displaystyle 5^{8} as a common factor and can therefore be taken outside the bracket

Vorlage:Displayed math

Furthermore, \displaystyle 625 = 5\cdot 125 = 5\cdot 5\cdot 25 = 5\cdot 5\cdot 5\cdot 5 = 5^{4} and we obtain

Vorlage:Displayed math