Lösung 1.3:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
By using the power rules, we can rewrite the expression, | By using the power rules, we can rewrite the expression, | ||
+ | {{Displayed math||<math>\left( \frac{2}{3} \right)^{-3} = \frac{2^{-3}}{3^{-3}} = \frac{\,\dfrac{1}{2^{3}}\,}{\,\dfrac{1}{3^{3}}\,} = \frac{\,\dfrac{1}{2^{3}}\cdot 3^{3}\,}{\,\dfrac{1}{\rlap{\,/}3^{3}}\cdot {}\rlap{\,/}3^{3}\,} = \frac{\,\dfrac{3^{3}}{2^{3}}\,}{1} = \frac{3^{3}}{2^{3}}\,,</math>}} | ||
- | + | and then carry out the calculation | |
- | + | {{Displayed math||<math>\frac{3^{3}}{2^{3}} = \frac{3\cdot 3\cdot 3}{2\cdot 2\cdot 2} = \frac{27}{8}\,</math>.}} | |
- | + | ||
- | + | ||
- | <math>\frac{3^{3}}{2^{3}}=\frac{3\ | + |
Version vom 12:50, 22. Sep. 2008
By using the power rules, we can rewrite the expression,
and then carry out the calculation