Lösung 2.1:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1d.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_1d.gif]] </center> | + | After <math> x^3y^2 </math> are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator. |
+ | |||
+ | <math> \qquad \begin{align} | ||
+ | x^3y^2\Big( \frac 1y - \frac 1{xy} +1 \Big) &= x^3y^2 \cdot\frac 1y -x^3y^2 \cdot \frac 1{xy} +x^3y^2\cdot 1 \\ | ||
+ | &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ | ||
+ | &=x^3y - x^2y +x^3y^2 | ||
+ | \end{align}</math> | ||
+ | |||
+ | where we have used | ||
+ | |||
+ | <math> \qquad \frac{x^3y^2}{y}= \frac{x^3\cdot y\cdot y}{y}= x^3y </math>, | ||
+ | |||
+ | <math>\qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y </math> | ||
+ | <!-- <center> [[Bild:2_1_1d.gif]] </center>--> | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 08:57, 13. Aug. 2008
After \displaystyle x^3y^2 are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator.
\displaystyle \qquad \begin{align} x^3y^2\Big( \frac 1y - \frac 1{xy} +1 \Big) &= x^3y^2 \cdot\frac 1y -x^3y^2 \cdot \frac 1{xy} +x^3y^2\cdot 1 \\ &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ &=x^3y - x^2y +x^3y^2 \end{align}
where we have used
\displaystyle \qquad \frac{x^3y^2}{y}= \frac{x^3\cdot y\cdot y}{y}= x^3y ,
\displaystyle \qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y