Lösung 2.1:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1d.gif </center> {{NAVCONTENT_STOP}})
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Bild:2_1_1d.gif]] </center>
+
After <math> x^3y^2 </math> are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator.
 +
 
 +
<math> \qquad \begin{align}
 +
x^3y^2\Big( \frac 1y - \frac 1{xy} +1 \Big) &= x^3y^2 \cdot\frac 1y -x^3y^2 \cdot \frac 1{xy} +x^3y^2\cdot 1 \\
 +
&=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\
 +
&=x^3y - x^2y +x^3y^2
 +
\end{align}</math>
 +
 
 +
where we have used
 +
 
 +
<math> \qquad \frac{x^3y^2}{y}= \frac{x^3\cdot y\cdot y}{y}= x^3y </math>,
 +
 
 +
<math>\qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y </math>
 +
<!-- <center> [[Bild:2_1_1d.gif]] </center>-->
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 08:57, 13. Aug. 2008