Lösung 1.2:2d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K
Zeile 1: Zeile 1:
If we divide up the denominators into their smallest possible integer factors,
If we divide up the denominators into their smallest possible integer factors,
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>\begin{align}
+
45&=5\cdot 9=5\cdot 3\cdot 3\,, \\
-
& 45=5\centerdot 9=5\centerdot 3\centerdot 3 \\
+
75&=3\cdot 25=3\cdot 5\cdot 5\,, \\
-
& 75=3\centerdot 25=3\centerdot 5\centerdot 5 \\
+
\end{align}</math>}}
-
\end{align}</math>
+
-
 
+
the expression can be written as
the expression can be written as
 +
{{Displayed math||<math>\frac{1}{5\cdot 3\cdot 3}+\frac{1}{3\cdot 5\cdot 5}</math>}}
-
<math>\frac{1}{5\centerdot 3\centerdot 3}+\frac{1}{3\centerdot 5\centerdot 5}</math>
+
and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5
-
 
+
and the second by 3, the result is the lowest possible denominator
-
and then we see that the denominators have
+
-
<math>3\centerdot 5</math>
+
-
as a common factor. Therefore, if we multiply the top and bottom of the first fraction by
+
-
<math>5</math>
+
-
and the second by
+
-
<math>3</math>
+
-
, the result is the lowest possible denominator.
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{2}{5\centerdot 3\centerdot 3}\centerdot \frac{5}{5}+\frac{1}{3\centerdot 5\centerdot 5}\centerdot \frac{3}{3} \\
+
-
& \\
+
-
& =\frac{2}{5\centerdot 3\centerdot 3\centerdot 5}+\frac{3}{3\centerdot 5\centerdot 5\centerdot 3} \\
+
-
& \\
+
-
& =\frac{10}{225}+\frac{3}{225} \\
+
-
\end{align}</math>
+
-
 
+
 +
{{Displayed math||<math>\begin{align}
 +
\frac{2}{5\cdot 3\cdot 3}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot
 +
\frac{3}{3} &=\frac{2}{5\cdot 3\cdot 3\cdot 5}
 +
+\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt]
 +
&= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\
 +
\end{align}</math>}}
-
The lowest common denominator is
+
The lowest common denominator is 225.
-
<math>225</math>
+
-
.
+

Version vom 07:52, 19. Sep. 2008

If we divide up the denominators into their smallest possible integer factors,

Vorlage:Displayed math

the expression can be written as

Vorlage:Displayed math

and then we see that the denominators have \displaystyle 3\cdot 5 as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 and the second by 3, the result is the lowest possible denominator

Vorlage:Displayed math

The lowest common denominator is 225.