Lösung 4.4:8b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:8b moved to Solution 4.4:8b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Suppose that
-
<center> [[Image:4_4_8b.gif]] </center>
+
<math>\text{cos }x\ne 0</math>
-
{{NAVCONTENT_STOP}}
+
, so that we can divide both sides by
 +
<math>\text{cos }x</math>
 +
to obtain
 +
 
 +
 +
<math>\frac{\sin x}{\cos x}=\sqrt{3}</math>
 +
i.e.
 +
<math>\tan x=\sqrt{3}</math>
 +
 
 +
 
 +
This equation has the solutions
 +
<math>x=\frac{\pi }{3}+n\pi </math>
 +
for all integers
 +
<math>n</math>.
 +
 
 +
If, on the other hand,
 +
<math>\text{cos }x=0</math>, so
 +
<math>\text{sin }x\text{ }=\pm \text{1}</math>
 +
( draw a unit circle) and the equation cannot have such a solution.
 +
 
 +
Thus, the equation has the solutions
 +
 
 +
 
 +
<math>x=\frac{\pi }{3}+n\pi </math>
 +
(
 +
<math>n</math>
 +
an arbitrary integer).

Version vom 13:39, 1. Okt. 2008

Suppose that \displaystyle \text{cos }x\ne 0 , so that we can divide both sides by \displaystyle \text{cos }x to obtain


\displaystyle \frac{\sin x}{\cos x}=\sqrt{3} i.e. \displaystyle \tan x=\sqrt{3}


This equation has the solutions \displaystyle x=\frac{\pi }{3}+n\pi for all integers \displaystyle n.

If, on the other hand, \displaystyle \text{cos }x=0, so \displaystyle \text{sin }x\text{ }=\pm \text{1} ( draw a unit circle) and the equation cannot have such a solution.

Thus, the equation has the solutions


\displaystyle x=\frac{\pi }{3}+n\pi ( \displaystyle n an arbitrary integer).