Lösung 4.4:7a
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:7a moved to Solution 4.4:7a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we examine the equation, we see that |
- | < | + | <math>x</math> |
- | {{ | + | only occurs as |
- | {{ | + | <math>\text{sin }x\text{ }</math> |
- | < | + | and it can therefore be appropriate to take an intermediary step and solve for |
- | {{ | + | <math>\text{sin }x</math>, instead of trying to solve for |
+ | <math>x</math> | ||
+ | directly. | ||
+ | |||
+ | If we write | ||
+ | <math>t=\sin x</math> | ||
+ | and treat | ||
+ | <math>t</math> | ||
+ | as a new unknown variable, the equation becomes | ||
+ | |||
+ | |||
+ | <math>2t^{2}+t=1</math> | ||
+ | |||
+ | |||
+ | when it is expressed completely in terms of | ||
+ | <math>t</math>. This is a normal second-degree equation; after dividing by | ||
+ | <math>\text{2}</math>, we complete the square on the left-hand side, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & 2t^{2}+t-\frac{1}{2}=\left( t+\frac{1}{4} \right)^{2}-\left( \frac{1}{4} \right)^{2}-\frac{1}{2} \\ | ||
+ | & =\left( t+\frac{1}{4} \right)^{2}-\frac{9}{16} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | and then obtain the equation | ||
+ | |||
+ | |||
+ | <math>\left( t+\frac{1}{4} \right)^{2}=\frac{9}{16}</math> | ||
+ | |||
+ | |||
+ | which has the solutions | ||
+ | <math>t=-\frac{1}{4}\pm \sqrt{\frac{9}{16}}=-\frac{1}{4}\pm \frac{3}{4}</math>, | ||
+ | i.e. | ||
+ | <math>t=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}</math> | ||
+ | and | ||
+ | <math>t=-\frac{1}{4}-\frac{3}{4}=-1</math> | ||
+ | |||
+ | |||
+ | Because | ||
+ | <math>t=\sin x</math>, this means that the values of | ||
+ | <math>x</math> | ||
+ | that satisfy the equation in the exercise will necessarily satisfy one of the basic equations, | ||
+ | <math>\text{sin }x=\frac{1}{2}</math> | ||
+ | or | ||
+ | <math>\text{sin }x=-\text{1}.</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\text{sin }x=\frac{1}{2}</math>: this equation has the solutions | ||
+ | <math>x={\pi }/{6}\;</math> | ||
+ | and | ||
+ | <math>x=\pi -{\pi }/{6}\;=5{\pi }/{6}\;</math> | ||
+ | in the unit circle and the general solution is | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{6}+2n\pi </math> | ||
+ | and | ||
+ | <math>x=\frac{5\pi }{6}+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. | ||
+ | |||
+ | |||
+ | <math>\text{sin }x=-\text{1}</math>: the equation has only one solution | ||
+ | <math>x={3\pi }/{2}\;</math> | ||
+ | in the unit circle, and the general solution is therefore | ||
+ | |||
+ | |||
+ | <math>x=\frac{3\pi }{2}+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. | ||
+ | |||
+ | All of the solution to the equation are given by | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x={\pi }/{6}\;+2n\pi \\ | ||
+ | x={5\pi }/{6}\;+2n\pi \\ | ||
+ | x={3\pi }/{2}\;+2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n\text{ }</math> | ||
+ | an arbitrary integer) |
Version vom 12:49, 1. Okt. 2008
If we examine the equation, we see that \displaystyle x only occurs as \displaystyle \text{sin }x\text{ } and it can therefore be appropriate to take an intermediary step and solve for \displaystyle \text{sin }x, instead of trying to solve for \displaystyle x directly.
If we write \displaystyle t=\sin x and treat \displaystyle t as a new unknown variable, the equation becomes
\displaystyle 2t^{2}+t=1
when it is expressed completely in terms of
\displaystyle t. This is a normal second-degree equation; after dividing by
\displaystyle \text{2}, we complete the square on the left-hand side,
\displaystyle \begin{align}
& 2t^{2}+t-\frac{1}{2}=\left( t+\frac{1}{4} \right)^{2}-\left( \frac{1}{4} \right)^{2}-\frac{1}{2} \\
& =\left( t+\frac{1}{4} \right)^{2}-\frac{9}{16} \\
\end{align}
and then obtain the equation
\displaystyle \left( t+\frac{1}{4} \right)^{2}=\frac{9}{16}
which has the solutions
\displaystyle t=-\frac{1}{4}\pm \sqrt{\frac{9}{16}}=-\frac{1}{4}\pm \frac{3}{4},
i.e.
\displaystyle t=-\frac{1}{4}+\frac{3}{4}=\frac{1}{2}
and
\displaystyle t=-\frac{1}{4}-\frac{3}{4}=-1
Because
\displaystyle t=\sin x, this means that the values of
\displaystyle x
that satisfy the equation in the exercise will necessarily satisfy one of the basic equations,
\displaystyle \text{sin }x=\frac{1}{2}
or
\displaystyle \text{sin }x=-\text{1}.
\displaystyle \text{sin }x=\frac{1}{2}: this equation has the solutions \displaystyle x={\pi }/{6}\; and \displaystyle x=\pi -{\pi }/{6}\;=5{\pi }/{6}\; in the unit circle and the general solution is
\displaystyle x=\frac{\pi }{6}+2n\pi
and
\displaystyle x=\frac{5\pi }{6}+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer.
\displaystyle \text{sin }x=-\text{1}: the equation has only one solution
\displaystyle x={3\pi }/{2}\;
in the unit circle, and the general solution is therefore
\displaystyle x=\frac{3\pi }{2}+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer.
All of the solution to the equation are given by
\displaystyle \left\{ \begin{array}{*{35}l}
x={\pi }/{6}\;+2n\pi \\
x={5\pi }/{6}\;+2n\pi \\
x={3\pi }/{2}\;+2n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer)