Lösung 4.4:6b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.4:6b moved to Solution 4.4:6b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | After moving the terms over to the left-hand side, so that |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>\sqrt{2}\sin x\cos x-\cos x=0</math> |
- | < | + | |
- | {{ | + | |
+ | we see that we can take out a common factor | ||
+ | <math>\text{cos }x</math>, | ||
+ | |||
+ | |||
+ | <math>\cos x\left( \sqrt{2}\sin x-1 \right)=0</math> | ||
+ | |||
+ | |||
+ | and that the equation is only satisfied if at least one of the factors, | ||
+ | <math>\text{cos }x</math> | ||
+ | or | ||
+ | <math>\sqrt{2}\text{sin }x-\text{1}</math> | ||
+ | is zero. Thus, there are two cases: | ||
+ | |||
+ | |||
+ | <math>\text{cos }x=0</math>: This basic equation has solutions | ||
+ | <math>x={\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>x=3{\pi }/{2}\;</math> | ||
+ | in the unit circle, and from this we see that the general solution is | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{2}+2n\pi </math> | ||
+ | and | ||
+ | <math>x=\frac{3\pi }{2}+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | is an arbitrary integer. Because the angles | ||
+ | <math>{\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>3{\pi }/{2}\;</math> | ||
+ | differ by | ||
+ | <math>\pi </math>, the solutions can be summarized as | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{2}+n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). | ||
+ | |||
+ | √ | ||
+ | <math>\sqrt{2}\text{sin }x-\text{1}=0</math> | ||
+ | : if we rearrange the equation, we obtain the basic equation as | ||
+ | <math>\text{sin }x\text{ }={1}/{\sqrt{2}}\;</math>, which has the solutions | ||
+ | <math>x={\pi }/{4}\;</math> | ||
+ | and | ||
+ | <math>x=3{\pi }/{4}\;</math> | ||
+ | in the unit circle and hence the general solution | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{4}+2n\pi </math> | ||
+ | and | ||
+ | <math>x=\frac{3\pi }{4}+2n\pi </math> | ||
+ | |||
+ | |||
+ | where | ||
+ | <math>n\text{ }</math> | ||
+ | can arbitrary integer. | ||
+ | |||
+ | All in all, the original equation has the solutions | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{array}{*{35}l} | ||
+ | x=\frac{\pi }{4}+2n\pi \\ | ||
+ | x=\frac{\pi }{2}+n\pi \\ | ||
+ | x=\frac{3\pi }{4}+2n\pi \\ | ||
+ | \end{array} \right.</math> | ||
+ | ( | ||
+ | <math>n\text{ }</math> | ||
+ | an arbitrary integer). |
Version vom 11:41, 1. Okt. 2008
After moving the terms over to the left-hand side, so that
\displaystyle \sqrt{2}\sin x\cos x-\cos x=0
we see that we can take out a common factor
\displaystyle \text{cos }x,
\displaystyle \cos x\left( \sqrt{2}\sin x-1 \right)=0
and that the equation is only satisfied if at least one of the factors,
\displaystyle \text{cos }x
or
\displaystyle \sqrt{2}\text{sin }x-\text{1}
is zero. Thus, there are two cases:
\displaystyle \text{cos }x=0: This basic equation has solutions
\displaystyle x={\pi }/{2}\;
and
\displaystyle x=3{\pi }/{2}\;
in the unit circle, and from this we see that the general solution is
\displaystyle x=\frac{\pi }{2}+2n\pi
and
\displaystyle x=\frac{3\pi }{2}+2n\pi
where
\displaystyle n\text{ }
is an arbitrary integer. Because the angles
\displaystyle {\pi }/{2}\;
and
\displaystyle 3{\pi }/{2}\;
differ by
\displaystyle \pi , the solutions can be summarized as
\displaystyle x=\frac{\pi }{2}+n\pi
(
\displaystyle n
an arbitrary integer).
√ \displaystyle \sqrt{2}\text{sin }x-\text{1}=0
- if we rearrange the equation, we obtain the basic equation as
\displaystyle \text{sin }x\text{ }={1}/{\sqrt{2}}\;, which has the solutions \displaystyle x={\pi }/{4}\; and \displaystyle x=3{\pi }/{4}\; in the unit circle and hence the general solution
\displaystyle x=\frac{\pi }{4}+2n\pi
and
\displaystyle x=\frac{3\pi }{4}+2n\pi
where
\displaystyle n\text{ }
can arbitrary integer.
All in all, the original equation has the solutions
\displaystyle \left\{ \begin{array}{*{35}l}
x=\frac{\pi }{4}+2n\pi \\
x=\frac{\pi }{2}+n\pi \\
x=\frac{3\pi }{4}+2n\pi \\
\end{array} \right.
(
\displaystyle n\text{ }
an arbitrary integer).