Lösung 4.4:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.4:3d moved to Solution 4.4:3d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we observe from the unit circle that the equation has two solutions for |
- | < | + | <math>0^{\circ }\le \text{3}x\le \text{36}0^{\circ }</math>, |
- | {{ | + | |
+ | |||
+ | <math>3x=15^{\circ }</math> | ||
+ | and | ||
+ | <math>3x=180^{\circ }-15^{\circ }=165^{\circ }</math> | ||
+ | |||
[[Image:4_4_3_d.gif|center]] | [[Image:4_4_3_d.gif|center]] | ||
+ | |||
+ | This means that all of the equation's solutions are | ||
+ | |||
+ | |||
+ | <math>3x=15^{\circ }+n\centerdot 360^{\circ }</math> | ||
+ | and | ||
+ | <math>3x=165^{\circ }+n\centerdot 360^{\circ }</math> | ||
+ | |||
+ | |||
+ | for all integers | ||
+ | <math>n</math>, i.e. | ||
+ | |||
+ | |||
+ | <math>x=5^{\circ }+n\centerdot 120^{\circ }</math> | ||
+ | and | ||
+ | <math>x=55^{\circ }+n\centerdot 120^{\circ }</math> |
Version vom 09:57, 1. Okt. 2008
First, we observe from the unit circle that the equation has two solutions for \displaystyle 0^{\circ }\le \text{3}x\le \text{36}0^{\circ },
\displaystyle 3x=15^{\circ }
and
\displaystyle 3x=180^{\circ }-15^{\circ }=165^{\circ }
This means that all of the equation's solutions are
\displaystyle 3x=15^{\circ }+n\centerdot 360^{\circ }
and
\displaystyle 3x=165^{\circ }+n\centerdot 360^{\circ }
for all integers
\displaystyle n, i.e.
\displaystyle x=5^{\circ }+n\centerdot 120^{\circ }
and
\displaystyle x=55^{\circ }+n\centerdot 120^{\circ }