Lösung 4.3:8b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:8b moved to Solution 4.3:8b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
-
<center> [[Image:4_3_8b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
Because
 +
<math>\tan v=\frac{\sin v}{\cos v}</math>, the left-hand side can be written using
 +
<math>\cos v</math>
 +
as the common denominator:
 +
 
 +
 
 +
<math>\frac{1}{\cos v}-\tan v=\frac{1}{\cos v}-\frac{\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}</math>
 +
 
 +
 
 +
Now, we observe that if we multiply top and bottom by with
 +
<math>\text{1}+\sin v</math>, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give
 +
<math>\text{1}-\sin ^{2}v\text{ }=\cos ^{2}v</math>, using the conjugate rule:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{\text{1-}\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}\centerdot \frac{1+\sin v}{1+\sin v}=\frac{1-\sin ^{2}v}{\cos v\left( 1+\sin v \right)} \\
 +
& =\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}. \\
 +
\end{align}</math>
 +
 
 +
 
 +
Eliminating
 +
<math>\cos v</math>
 +
then gives the answer:
 +
 
 +
 
 +
<math>\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}=\frac{\cos v}{1+\sin v}</math>

Version vom 10:53, 30. Sep. 2008


Because \displaystyle \tan v=\frac{\sin v}{\cos v}, the left-hand side can be written using \displaystyle \cos v as the common denominator:


\displaystyle \frac{1}{\cos v}-\tan v=\frac{1}{\cos v}-\frac{\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}


Now, we observe that if we multiply top and bottom by with \displaystyle \text{1}+\sin v, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give \displaystyle \text{1}-\sin ^{2}v\text{ }=\cos ^{2}v, using the conjugate rule:


\displaystyle \begin{align} & \frac{\text{1-}\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}\centerdot \frac{1+\sin v}{1+\sin v}=\frac{1-\sin ^{2}v}{\cos v\left( 1+\sin v \right)} \\ & =\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}. \\ \end{align}


Eliminating \displaystyle \cos v then gives the answer:


\displaystyle \frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}=\frac{\cos v}{1+\sin v}