Lösung 4.3:8b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.3:8b moved to Solution 4.3:8b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | |
| - | < | + | |
| - | {{ | + | Because |
| + | <math>\tan v=\frac{\sin v}{\cos v}</math>, the left-hand side can be written using | ||
| + | <math>\cos v</math> | ||
| + | as the common denominator: | ||
| + | |||
| + | |||
| + | <math>\frac{1}{\cos v}-\tan v=\frac{1}{\cos v}-\frac{\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}</math> | ||
| + | |||
| + | |||
| + | Now, we observe that if we multiply top and bottom by with | ||
| + | <math>\text{1}+\sin v</math>, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give | ||
| + | <math>\text{1}-\sin ^{2}v\text{ }=\cos ^{2}v</math>, using the conjugate rule: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{\text{1-}\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}\centerdot \frac{1+\sin v}{1+\sin v}=\frac{1-\sin ^{2}v}{\cos v\left( 1+\sin v \right)} \\ | ||
| + | & =\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}. \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | Eliminating | ||
| + | <math>\cos v</math> | ||
| + | then gives the answer: | ||
| + | |||
| + | |||
| + | <math>\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}=\frac{\cos v}{1+\sin v}</math> | ||
Version vom 10:53, 30. Sep. 2008
Because
\displaystyle \tan v=\frac{\sin v}{\cos v}, the left-hand side can be written using
\displaystyle \cos v
as the common denominator:
\displaystyle \frac{1}{\cos v}-\tan v=\frac{1}{\cos v}-\frac{\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}
Now, we observe that if we multiply top and bottom by with
\displaystyle \text{1}+\sin v, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give
\displaystyle \text{1}-\sin ^{2}v\text{ }=\cos ^{2}v, using the conjugate rule:
\displaystyle \begin{align}
& \frac{\text{1-}\sin v}{\cos v}=\frac{\text{1-}\sin v}{\cos v}\centerdot \frac{1+\sin v}{1+\sin v}=\frac{1-\sin ^{2}v}{\cos v\left( 1+\sin v \right)} \\
& =\frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}. \\
\end{align}
Eliminating
\displaystyle \cos v
then gives the answer:
\displaystyle \frac{\cos ^{2}v}{\cos v\left( 1+\sin v \right)}=\frac{\cos v}{1+\sin v}
