Lösung 4.3:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:6b moved to Solution 4.3:6b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We draw an angle
-
<center> [[Image:4_3_6b-1(2).gif]] </center>
+
<math>v</math>
-
{{NAVCONTENT_STOP}}
+
in the unit circle, and the fact that
-
{{NAVCONTENT_START}}
+
<math>\text{sin }v\text{ }=\frac{3}{10}</math>
-
<center> [[Image:4_3_6b-2(2).gif]] </center>
+
means that its
-
{{NAVCONTENT_STOP}}
+
<math>y</math>
 +
-coordinate equals
 +
<math>\frac{3}{10}</math>.
[[Image:4_3_6_b1.gif|center]]
[[Image:4_3_6_b1.gif|center]]
 +
 +
With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of
 +
<math>\text{1}</math>
 +
and a vertical side of length
 +
<math>\frac{3}{10}</math>.
 +
 +
[[Image:4_3_6_b2.gif|center]]
[[Image:4_3_6_b2.gif|center]]
 +
 +
We can determine the triangle's remaining side by using Pythagoras' theorem,
 +
 +
 +
<math>a^{2}+\left( \frac{3}{10} \right)^{2}=1^{2}</math>
 +
 +
 +
which gives that
 +
 +
 +
<math>a=\sqrt{1-\left( \frac{3}{10} \right)^{2}}=\sqrt{1-\frac{9}{100}}=\sqrt{\frac{91}{100}}=\frac{\sqrt{91}}{10}</math>
 +
 +
This means that the angle's
 +
<math>x</math>
 +
-coordinate is
 +
<math>-a</math>, i.e. we have
 +
 +
 +
<math>\cos v=-\frac{\sqrt{91}}{10}</math>
 +
 +
and thus
 +
 +
 +
<math>\tan v=\frac{\sin v}{\cos v}=\frac{\frac{3}{10}}{-\frac{\sqrt{91}}{10}}=-\frac{3}{\sqrt{91}}</math>

Version vom 09:15, 10. Okt. 2008

We draw an angle \displaystyle v in the unit circle, and the fact that \displaystyle \text{sin }v\text{ }=\frac{3}{10} means that its \displaystyle y -coordinate equals \displaystyle \frac{3}{10}.

With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of \displaystyle \text{1} and a vertical side of length \displaystyle \frac{3}{10}.


We can determine the triangle's remaining side by using Pythagoras' theorem,


\displaystyle a^{2}+\left( \frac{3}{10} \right)^{2}=1^{2}


which gives that


\displaystyle a=\sqrt{1-\left( \frac{3}{10} \right)^{2}}=\sqrt{1-\frac{9}{100}}=\sqrt{\frac{91}{100}}=\frac{\sqrt{91}}{10}

This means that the angle's \displaystyle x -coordinate is \displaystyle -a, i.e. we have


\displaystyle \cos v=-\frac{\sqrt{91}}{10}

and thus


\displaystyle \tan v=\frac{\sin v}{\cos v}=\frac{\frac{3}{10}}{-\frac{\sqrt{91}}{10}}=-\frac{3}{\sqrt{91}}