Lösung 4.3:5

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:5 moved to Solution 4.3:5: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
An often-used technique to calculate
-
<center> [[Image:4_3_5-1(2).gif]] </center>
+
<math>\text{cos }v</math>
-
{{NAVCONTENT_STOP}}
+
and
-
{{NAVCONTENT_START}}
+
<math>\text{tan }v</math>, given the sine value of an acute angle, is to draw the angle
-
<center> [[Image:4_3_5-2(2).gif]] </center>
+
<math>v</math>
-
{{NAVCONTENT_STOP}}
+
in a right-angled triangle which has two sides arranged so that
 +
<math>\text{sin }v={5}/{7}\;</math>.
 +
 
 +
 
[[Image:4_3_5_1.gif|center]]
[[Image:4_3_5_1.gif|center]]
 +
 +
Using Pythagoras' theorem, we can determine the length of the third side in the triangle.
 +
 +
[[Image:4_3_5_2.gif|center]]
[[Image:4_3_5_2.gif|center]]
 +
 +
 +
<math>x^{2}+5^{2}=7^{2}</math>
 +
which gives that
 +
<math>x=\sqrt{7^{2}-5^{2}}=\sqrt{24}=2\sqrt{6}</math>
 +
 +
Then, using the definition of cosine and tangent,
 +
 +
 +
<math>\begin{align}
 +
& \cos v=\frac{x}{7}=\frac{2\sqrt{6}}{7}, \\
 +
& \tan v=\frac{5}{x}=\frac{5}{2\sqrt{6}} \\
 +
\end{align}</math>
 +
 +
 +
NOTE: Note that the right-angled triangle that we use is just a tool and has nothing to do with the triangle that is referred to in the question.

Version vom 12:11, 29. Sep. 2008

An often-used technique to calculate \displaystyle \text{cos }v and \displaystyle \text{tan }v, given the sine value of an acute angle, is to draw the angle \displaystyle v in a right-angled triangle which has two sides arranged so that \displaystyle \text{sin }v={5}/{7}\;.


Using Pythagoras' theorem, we can determine the length of the third side in the triangle.



\displaystyle x^{2}+5^{2}=7^{2} which gives that \displaystyle x=\sqrt{7^{2}-5^{2}}=\sqrt{24}=2\sqrt{6}

Then, using the definition of cosine and tangent,


\displaystyle \begin{align} & \cos v=\frac{x}{7}=\frac{2\sqrt{6}}{7}, \\ & \tan v=\frac{5}{x}=\frac{5}{2\sqrt{6}} \\ \end{align}


NOTE: Note that the right-angled triangle that we use is just a tool and has nothing to do with the triangle that is referred to in the question.