Lösung 4.3:4e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:4e moved to Solution 4.3:4e: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The addition formula for sine gives us that
-
<center> [[Image:4_3_4e.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\sin \left( v+\frac{\pi }{4} \right)=\sin v\centerdot \cos \frac{\pi }{4}+\cos v\centerdot \sin \frac{\pi }{4}.</math>
 +
 
 +
 
 +
Because we know from exercise b that
 +
<math>\sin v=\sqrt{1-b^{2}}</math>
 +
we use that
 +
<math>\cos \frac{\pi }{4}=\sin \frac{\pi }{4}=\frac{1}{\sqrt{2}}</math>
 +
to obtain
 +
 
 +
<math>\sin \left( v+\frac{\pi }{4} \right)=\sqrt{1-b^{2}}\centerdot \frac{1}{\sqrt{2}}+b\centerdot \frac{1}{\sqrt{2}}.</math>

Version vom 11:54, 29. Sep. 2008

The addition formula for sine gives us that


\displaystyle \sin \left( v+\frac{\pi }{4} \right)=\sin v\centerdot \cos \frac{\pi }{4}+\cos v\centerdot \sin \frac{\pi }{4}.


Because we know from exercise b that \displaystyle \sin v=\sqrt{1-b^{2}} we use that \displaystyle \cos \frac{\pi }{4}=\sin \frac{\pi }{4}=\frac{1}{\sqrt{2}} to obtain

\displaystyle \sin \left( v+\frac{\pi }{4} \right)=\sqrt{1-b^{2}}\centerdot \frac{1}{\sqrt{2}}+b\centerdot \frac{1}{\sqrt{2}}.