Lösung 4.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.3:4c moved to Solution 4.3:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The formula for double angles gives |
- | + | ||
- | {{ | + | |
+ | <math>\sin 2v=2\sin v\cos v</math> | ||
+ | |||
+ | |||
+ | and from exercise b, we have | ||
+ | <math>\sin v=\sqrt{1-b^{2}}</math> | ||
+ | |||
+ | |||
+ | Thus, | ||
+ | |||
+ | |||
+ | <math>\sin 2v=2b\sqrt{1-b^{2}}</math> |
Version vom 11:44, 29. Sep. 2008
The formula for double angles gives
\displaystyle \sin 2v=2\sin v\cos v
and from exercise b, we have
\displaystyle \sin v=\sqrt{1-b^{2}}
Thus,
\displaystyle \sin 2v=2b\sqrt{1-b^{2}}