Lösung 4.3:3f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.3:3f moved to Solution 4.3:3f: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | In this case, it is perhaps simplest to use the addition formula for sine, |
- | < | + | |
- | {{ | + | |
+ | <math>\sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.</math> | ||
+ | |||
+ | Since | ||
+ | <math>\sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a</math>, and | ||
+ | <math>\cos v=\sqrt{1-a^{2}}</math> | ||
+ | this can be written as | ||
+ | |||
+ | |||
+ | <math>\sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.</math> |
Version vom 11:34, 29. Sep. 2008
In this case, it is perhaps simplest to use the addition formula for sine,
\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\sin \frac{\pi }{3}\centerdot \cos v+\cos \frac{\pi }{3}\centerdot \sin v.
Since \displaystyle \sin \frac{\pi }{3}=\frac{\sqrt{3}}{2},\ \ \cos \frac{\pi }{3}=\frac{1}{2},\ \ \sin v=a, and \displaystyle \cos v=\sqrt{1-a^{2}} this can be written as
\displaystyle \sin \left( \frac{\pi }{3}+v \right)=\frac{\sqrt{3}}{2}\sqrt{1-a^{2}}+\frac{1}{2}a.