Lösung 4.3:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.3:2b moved to Solution 4.3:2b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we write the angle
 +
<math>\frac{7\pi }{5}</math>
 +
as
 +
 
 +
 
 +
<math>\frac{7\pi }{5}=\frac{5\pi +2\pi }{5}=\pi +\frac{2\pi }{5}</math>
 +
 
 +
 
 +
we see that
 +
<math>\frac{7\pi }{5}</math>
 +
is an angle in the third quadrant.
 +
 
<center> [[Image:4_3_2_b.gif]] </center>
<center> [[Image:4_3_2_b.gif]] </center>
-
<center> [[Image:4_3_2b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
the line
 +
<math>x=\cos \frac{7\pi }{5}</math>
 +
 +
The angle between
 +
<math>0</math>
 +
and
 +
<math>\pi </math>
 +
which has the same x-coordinate as the angle
 +
<math>{7\pi }/{5}\;</math>, and hence the same cosine value, is the reflection of the angle
 +
<math>{7\pi }/{5}\;</math>
 +
in the
 +
<math>x</math>
 +
-axis, i.e.
 +
<math>v=\pi -\frac{2\pi }{5}=\frac{3\pi }{5}</math>.

Version vom 10:34, 29. Sep. 2008

If we write the angle \displaystyle \frac{7\pi }{5} as


\displaystyle \frac{7\pi }{5}=\frac{5\pi +2\pi }{5}=\pi +\frac{2\pi }{5}


we see that \displaystyle \frac{7\pi }{5} is an angle in the third quadrant.

Image:4_3_2_b.gif


the line \displaystyle x=\cos \frac{7\pi }{5}

The angle between \displaystyle 0 and \displaystyle \pi which has the same x-coordinate as the angle \displaystyle {7\pi }/{5}\;, and hence the same cosine value, is the reflection of the angle \displaystyle {7\pi }/{5}\; in the \displaystyle x -axis, i.e. \displaystyle v=\pi -\frac{2\pi }{5}=\frac{3\pi }{5}.