Lösung 4.2:5d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:5d moved to Solution 4.2:5d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
By subtracting
-
<center> [[Image:4_2_5d.gif]] </center>
+
<math>360^{\circ }</math>
-
{{NAVCONTENT_STOP}}
+
from
 +
<math>\text{495}^{\circ }</math>, we do not change the value of the tangent:
 +
 
 +
 
 +
<math>\tan \text{495}^{\circ }=\tan \left( \text{495}^{\circ }-360^{\circ } \right)=\tan \text{135}^{\circ }</math>
 +
 
 +
We know from exercise a that
 +
<math>\cos 135^{\circ }=-\frac{1}{\sqrt{2}}</math>
 +
and
 +
<math>\sin 135^{\circ }=\frac{1}{\sqrt{2}}</math>, which gives
 +
 
 +
 
 +
<math>\tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1</math>

Version vom 08:16, 29. Sep. 2008

By subtracting \displaystyle 360^{\circ } from \displaystyle \text{495}^{\circ }, we do not change the value of the tangent:


\displaystyle \tan \text{495}^{\circ }=\tan \left( \text{495}^{\circ }-360^{\circ } \right)=\tan \text{135}^{\circ }

We know from exercise a that \displaystyle \cos 135^{\circ }=-\frac{1}{\sqrt{2}} and \displaystyle \sin 135^{\circ }=\frac{1}{\sqrt{2}}, which gives


\displaystyle \tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1