Lösung 4.2:5d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.2:5d moved to Solution 4.2:5d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | By subtracting |
- | < | + | <math>360^{\circ }</math> |
- | {{ | + | from |
+ | <math>\text{495}^{\circ }</math>, we do not change the value of the tangent: | ||
+ | |||
+ | |||
+ | <math>\tan \text{495}^{\circ }=\tan \left( \text{495}^{\circ }-360^{\circ } \right)=\tan \text{135}^{\circ }</math> | ||
+ | |||
+ | We know from exercise a that | ||
+ | <math>\cos 135^{\circ }=-\frac{1}{\sqrt{2}}</math> | ||
+ | and | ||
+ | <math>\sin 135^{\circ }=\frac{1}{\sqrt{2}}</math>, which gives | ||
+ | |||
+ | |||
+ | <math>\tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1</math> |
Version vom 08:16, 29. Sep. 2008
By subtracting \displaystyle 360^{\circ } from \displaystyle \text{495}^{\circ }, we do not change the value of the tangent:
\displaystyle \tan \text{495}^{\circ }=\tan \left( \text{495}^{\circ }-360^{\circ } \right)=\tan \text{135}^{\circ }
We know from exercise a that \displaystyle \cos 135^{\circ }=-\frac{1}{\sqrt{2}} and \displaystyle \sin 135^{\circ }=\frac{1}{\sqrt{2}}, which gives
\displaystyle \tan 135^{\circ }=\frac{\sin 135^{\circ }}{\cos 135^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1