Lösung 4.2:5b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.2:5b moved to Solution 4.2:5b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we draw the angle |
- | + | <math>\text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ }</math> | |
- | {{ | + | on a unit circle, we see that it makes an angle of |
+ | <math>\text{45}^{\circ }</math> | ||
+ | with the negative | ||
+ | <math>x</math> | ||
+ | -axis. | ||
+ | |||
[[Image:4_2_5_b1.gif|center]] | [[Image:4_2_5_b1.gif|center]] | ||
+ | |||
+ | This means that | ||
+ | <math>\text{tan 225}^{\circ }</math>, which is the gradient of the line that makes an angle of | ||
+ | <math>\text{45}^{\circ }</math> | ||
+ | with the positive | ||
+ | <math>x</math> | ||
+ | -axis, equals | ||
+ | <math>\text{tan 225}^{\circ }</math>, because the line which makes an angle of | ||
+ | <math>\text{45}^{\circ }</math> | ||
+ | has the same slope: | ||
+ | |||
+ | |||
+ | <math>\tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1</math> | ||
+ | |||
+ | |||
+ | |||
[[Image:4_2_5_b2.gif|center]] | [[Image:4_2_5_b2.gif|center]] |
Version vom 08:04, 29. Sep. 2008
If we draw the angle \displaystyle \text{225}^{\circ }\text{ }=\text{ 18}0^{\circ }\text{ }+\text{ 45}^{\circ } on a unit circle, we see that it makes an angle of \displaystyle \text{45}^{\circ } with the negative \displaystyle x -axis.
This means that \displaystyle \text{tan 225}^{\circ }, which is the gradient of the line that makes an angle of \displaystyle \text{45}^{\circ } with the positive \displaystyle x -axis, equals \displaystyle \text{tan 225}^{\circ }, because the line which makes an angle of \displaystyle \text{45}^{\circ } has the same slope:
\displaystyle \tan 225^{\circ }\text{ }=\tan \text{45}^{\circ }=\frac{\sin \text{45}^{\circ }}{\cos \text{45}^{\circ }}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1