Lösung 4.2:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:4c moved to Solution 4.2:4c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
In exercise e, we studied the angle
-
<center> [[Image:4_2_4c.gif]] </center>
+
<math>\frac{3\pi }{4}</math>
-
{{NAVCONTENT_STOP}}
+
and found that
 +
 
 +
<math>\cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}}</math>
 +
and
 +
<math>\sin \frac{3\pi }{4}=\frac{1}{\sqrt{2}}</math>
 +
 
 +
 
 +
Because
 +
<math>\text{tan }x</math>
 +
is defined as
 +
<math>\frac{\sin x}{\cos x}</math>, we get immediately that
 +
 
 +
 
 +
<math>\tan \frac{3\pi }{4}=\frac{\sin \frac{3\pi }{4}}{\cos \frac{3\pi }{4}}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1</math>

Version vom 13:11, 28. Sep. 2008

In exercise e, we studied the angle \displaystyle \frac{3\pi }{4} and found that

\displaystyle \cos \frac{3\pi }{4}=-\frac{1}{\sqrt{2}} and \displaystyle \sin \frac{3\pi }{4}=\frac{1}{\sqrt{2}}


Because \displaystyle \text{tan }x is defined as \displaystyle \frac{\sin x}{\cos x}, we get immediately that


\displaystyle \tan \frac{3\pi }{4}=\frac{\sin \frac{3\pi }{4}}{\cos \frac{3\pi }{4}}=\frac{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}=-1