Lösung 4.2:4b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:4b moved to Solution 4.2:4b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by subtracting
-
<center> [[Image:4_2_4b-1(2).gif]] </center>
+
<math>2\pi </math>
-
{{NAVCONTENT_STOP}}
+
from
-
{{NAVCONTENT_START}}
+
<math>\frac{11\pi }{3}</math>, so that we get an angle between
-
<center> [[Image:4_2_4b-2(2).gif]] </center>
+
<math>o</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>2\pi </math>. This doesn't change the cosine value
 +
 
 +
 
 +
<math>\cos \frac{11\pi }{3}=\cos \left( \frac{11\pi }{3}-2\pi \right)=\cos \frac{5\pi }{3}</math>
 +
 
 +
 
 +
Then, by rewriting
 +
<math>\frac{5\pi }{3}</math>
 +
as a sum of
 +
<math>\pi </math>
 +
- and
 +
<math>\frac{\pi }{2}</math>
 +
-terms
 +
 
 +
 
 +
<math>\frac{5\pi }{3}=\frac{3\pi +\frac{3}{2}\pi +\frac{1}{2}\pi }{3}=\pi +\frac{\pi }{2}+\frac{\pi }{6}</math>
 +
 
 +
we see that
 +
<math>\frac{5\pi }{3}</math>
 +
is an angle in the fourth quadrant which makes an angle
 +
<math>\frac{\pi }{6}</math>
 +
with the negative
 +
<math>y</math>
 +
-axis.
 +
 
 +
 
[[Image:4_2_4b1.gif]]
[[Image:4_2_4b1.gif]]
 +
 +
With the help of a triangle and a little trigonometry, we can determine the coordinates for the point on a unit circle which corresponds to the angle
 +
<math>\frac{5\pi }{3}</math> .
 +
 +
[[Image:4_2_4_b2.gif]]
[[Image:4_2_4_b2.gif]]
 +
 +
The point has coordinates
 +
<math>\left( \frac{1}{2} \right.,\left. -\frac{\sqrt{3}}{2} \right)</math>
 +
and
 +
<math>\cos \frac{11\pi }{3}=\cos \frac{5\pi }{3}=\frac{1}{2}</math>.

Version vom 13:05, 28. Sep. 2008

We start by subtracting \displaystyle 2\pi from \displaystyle \frac{11\pi }{3}, so that we get an angle between \displaystyle o and \displaystyle 2\pi . This doesn't change the cosine value


\displaystyle \cos \frac{11\pi }{3}=\cos \left( \frac{11\pi }{3}-2\pi \right)=\cos \frac{5\pi }{3}


Then, by rewriting \displaystyle \frac{5\pi }{3} as a sum of \displaystyle \pi - and \displaystyle \frac{\pi }{2} -terms


\displaystyle \frac{5\pi }{3}=\frac{3\pi +\frac{3}{2}\pi +\frac{1}{2}\pi }{3}=\pi +\frac{\pi }{2}+\frac{\pi }{6}

we see that \displaystyle \frac{5\pi }{3} is an angle in the fourth quadrant which makes an angle \displaystyle \frac{\pi }{6} with the negative \displaystyle y -axis.


Image:4_2_4b1.gif

With the help of a triangle and a little trigonometry, we can determine the coordinates for the point on a unit circle which corresponds to the angle \displaystyle \frac{5\pi }{3} .


Image:4_2_4_b2.gif

The point has coordinates \displaystyle \left( \frac{1}{2} \right.,\left. -\frac{\sqrt{3}}{2} \right) and \displaystyle \cos \frac{11\pi }{3}=\cos \frac{5\pi }{3}=\frac{1}{2}.