Lösung 4.2:3d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:3d moved to Solution 4.2:3d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
In order to get an angle between
-
<center> [[Image:4_2_3d.gif]] </center>
+
<math>0</math>
-
{{NAVCONTENT_STOP}}
+
and
 +
<math>\text{2}\pi </math>, we subtract
 +
<math>\text{2}\pi </math>
 +
from
 +
<math>{7\pi }/{2}\;</math>
 +
, which also leaves the cosine value unchanged
 +
 
 +
 
 +
<math>\cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}</math>
 +
 
 +
 
 +
When we draw a line which makes an angle
 +
<math>{3\pi }/{2}\;</math>
 +
with the positive
 +
<math>x</math>
 +
-axis, we get the negative
 +
<math>y</math>
 +
-axis and we see that this line cuts the unit circle at the point
 +
<math>\left( 0 \right.,\left. -1 \right)</math>. The
 +
<math>x</math>
 +
-coordinate of the intersection point is thus
 +
<math>0</math>
 +
and hence
 +
<math>\cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0</math>
 +
 
 +
 
 +
 
[[Image:4_2_3_d.gif|center]]
[[Image:4_2_3_d.gif|center]]

Version vom 12:06, 28. Sep. 2008

In order to get an angle between \displaystyle 0 and \displaystyle \text{2}\pi , we subtract \displaystyle \text{2}\pi from \displaystyle {7\pi }/{2}\; , which also leaves the cosine value unchanged


\displaystyle \cos \frac{7\pi }{2}=\cos \left( \frac{7\pi }{2}-2\pi \right)=\cos \frac{3\pi }{2}


When we draw a line which makes an angle \displaystyle {3\pi }/{2}\; with the positive \displaystyle x -axis, we get the negative \displaystyle y -axis and we see that this line cuts the unit circle at the point \displaystyle \left( 0 \right.,\left. -1 \right). The \displaystyle x -coordinate of the intersection point is thus \displaystyle 0 and hence \displaystyle \cos {7\pi }/{2}\;=\cos {3\pi }/{2}\;=0