Lösung 4.2:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.2:3b moved to Solution 4.2:3b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The angle
-
<center> [[Image:4_2_3b.gif]] </center>
+
<math>\text{2}\pi </math>
-
{{NAVCONTENT_STOP}}
+
corresponds to a whole revolution and therefore we see that if we draw in a line with angle
 +
<math>\text{2}\pi </math>
 +
relative to the positive
 +
<math>x</math>
 +
-axis, we will get the positive
 +
<math>x</math>
 +
-axis.
 +
 
[[Image:4_2_3_b.gif|center]]
[[Image:4_2_3_b.gif|center]]
 +
 +
Because
 +
<math>\cos \text{2}\pi </math>
 +
is the
 +
<math>x</math>
 +
-coordinate for the point of intersection between the line with angle
 +
<math>\text{2}\pi </math>
 +
and the unit circle, we can see directly that
 +
<math>\cos \text{2}\pi =1</math>.

Version vom 11:51, 28. Sep. 2008

The angle \displaystyle \text{2}\pi corresponds to a whole revolution and therefore we see that if we draw in a line with angle \displaystyle \text{2}\pi relative to the positive \displaystyle x -axis, we will get the positive \displaystyle x -axis.

Because \displaystyle \cos \text{2}\pi is the \displaystyle x -coordinate for the point of intersection between the line with angle \displaystyle \text{2}\pi and the unit circle, we can see directly that \displaystyle \cos \text{2}\pi =1.