Lösung 4.1:9

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.1:9 moved to Solution 4.1:9: Robot: moved page)
Zeile 1: Zeile 1:
 +
<math>\text{1}0</math>
 +
seconds corresponds to
 +
<math>\frac{1}{6}</math>
 +
minutes, so that during that time period, the second hand sweeps over
 +
<math>\frac{1}{6}</math>
 +
of a turn, i.e. the sector of a circle with angle
 +
 +
 +
<math>\alpha =\frac{1}{6}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{\pi }{3}</math>
 +
radians
 +
 +
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
<center> [[Image:4_1_9_.gif]] </center>
<center> [[Image:4_1_9_.gif]] </center>
-
<center> [[Image:4_1_9.gif]] </center>
+
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
 +
 +
The area of the sector is
 +
 +
Area
 +
<math>=\frac{1}{2}\alpha r^{2}=\frac{1}{2}\centerdot \frac{\pi }{3}\centerdot \left( 8\ \text{cm} \right)^{2}=\frac{32\pi }{3}\ \text{cm}^{2}\approx 33.5\ \text{cm}^{2}</math>

Version vom 12:30, 27. Sep. 2008

\displaystyle \text{1}0 seconds corresponds to \displaystyle \frac{1}{6} minutes, so that during that time period, the second hand sweeps over \displaystyle \frac{1}{6} of a turn, i.e. the sector of a circle with angle


\displaystyle \alpha =\frac{1}{6}\centerdot 2\pi radians \displaystyle =\frac{\pi }{3} radians


The area of the sector is

Area \displaystyle =\frac{1}{2}\alpha r^{2}=\frac{1}{2}\centerdot \frac{\pi }{3}\centerdot \left( 8\ \text{cm} \right)^{2}=\frac{32\pi }{3}\ \text{cm}^{2}\approx 33.5\ \text{cm}^{2}