Lösung 4.1:7d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.1:7d moved to Solution 4.1:7d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
+ | We rewrite the equation in standard by completing the square for the x- and y-terms: | ||
+ | |||
+ | |||
+ | <math>x^{2}-2x=\left( x-1 \right)^{2}-1^{2}</math> | ||
+ | |||
+ | |||
+ | <math>y^{2}+2y=\left( y+1 \right)^{2}-1^{2}</math> | ||
+ | |||
+ | |||
+ | Now, the equation is | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x-1 \right)^{2}-1+\left( y+1 \right)^{2}-1=-2 \\ | ||
+ | & \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+1 \right)^{2}=0 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The only point which satisfies this equation is | ||
+ | <math>\left( x \right.,\left. y \right)=\left( 1 \right.,\left. -1 \right)</math> | ||
+ | because, for all other values of | ||
+ | <math>x</math> | ||
+ | and | ||
+ | <math>y</math> , the left-hand side is strictly positive and therefore not zero. | ||
+ | |||
+ | |||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
<center> [[Image:4_1_7_d.gif]] </center> | <center> [[Image:4_1_7_d.gif]] </center> | ||
- | + | ||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 12:12, 27. Sep. 2008
We rewrite the equation in standard by completing the square for the x- and y-terms:
\displaystyle x^{2}-2x=\left( x-1 \right)^{2}-1^{2}
\displaystyle y^{2}+2y=\left( y+1 \right)^{2}-1^{2}
Now, the equation is
\displaystyle \begin{align}
& \left( x-1 \right)^{2}-1+\left( y+1 \right)^{2}-1=-2 \\
& \Leftrightarrow \quad \left( x-1 \right)^{2}+\left( y+1 \right)^{2}=0 \\
\end{align}
The only point which satisfies this equation is
\displaystyle \left( x \right.,\left. y \right)=\left( 1 \right.,\left. -1 \right)
because, for all other values of
\displaystyle x
and
\displaystyle y , the left-hand side is strictly positive and therefore not zero.