Lösung 4.1:6b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Lösning 4.1:6b moved to Solution 4.1:6b: Robot: moved page) | |||
| Zeile 1: | Zeile 1: | ||
| + | A quick way to interpret the equation is to compare it with the standard formula for the equation of a circle  with centre at  | ||
| + | <math>\left( a \right.,\left. b \right)</math> | ||
| + | and radius  | ||
| + | <math>r</math>, | ||
| + | |||
| + | |||
| + | <math>\left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}</math> | ||
| + | |||
| + | |||
| + | In our case, we can write the equation as  | ||
| + | |||
| + | |||
| + | <math>\left( x-1 \right)^{2}+\left( y-2 \right)^{2}=\left( \sqrt{3} \right)^{2}</math> | ||
| + | |||
| + | |||
| + | and then we see that it describes a circle with centre at  | ||
| + | <math>\left( 1 \right.,\left. 2 \right)</math> | ||
| + | and radius  | ||
| + | |||
| + | |||
| {{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
| [[Image:4_1_6_b.gif|center]] | [[Image:4_1_6_b.gif|center]] | ||
| - | <center> [[Image:4_1_6b.gif]] </center> | ||
| {{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} | ||
Version vom 11:33, 27. Sep. 2008
A quick way to interpret the equation is to compare it with the standard formula for the equation of a circle with centre at \displaystyle \left( a \right.,\left. b \right) and radius \displaystyle r,
\displaystyle \left( x-a \right)^{2}+\left( y-b \right)^{2}=r^{2}
In our case, we can write the equation as 
\displaystyle \left( x-1 \right)^{2}+\left( y-2 \right)^{2}=\left( \sqrt{3} \right)^{2}
and then we see that it describes a circle with centre at 
\displaystyle \left( 1 \right.,\left. 2 \right)
and radius 
 
		  
