Lösung 3.2:5
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.2:5 moved to Solution 3.2:5: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | After squaring both sides, we obtain the equation |
- | < | + | |
- | {{ | + | |
- | {{ | + | <math>3x-2=\left( 2-x \right)^{2}\quad \quad (*)</math> |
- | < | + | |
- | {{ | + | |
+ | and if we expand the right-hand side and then collect gather the terms, we get | ||
+ | |||
+ | |||
+ | <math>x^{2}-7x+6=0</math> | ||
+ | |||
+ | |||
+ | Completing the square of the left-hand side, we obtain | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}-7x+6=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+6 \\ | ||
+ | & =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{24}{4} \\ | ||
+ | & =\left( x-\frac{7}{2} \right)^{2}-\frac{25}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | which means that the equation can be written as | ||
+ | |||
+ | |||
+ | <math>\left( x-\frac{7}{2} \right)^{2}=\frac{25}{4}</math> | ||
+ | |||
+ | |||
+ | and the solutions are therefore | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x=\frac{7}{2}+\sqrt{\frac{25}{4}=}\frac{7}{2}+\frac{5}{2}=\frac{12}{2}=6 \\ | ||
+ | & x=\frac{7}{2}-\sqrt{\frac{25}{4}=}\frac{7}{2}-\frac{5}{2}=\frac{2}{2}=1 \\ | ||
+ | \end{align}</math> | ||
+ | EQ6 | ||
+ | |||
+ | Substituting | ||
+ | <math>x=\text{1 }</math> | ||
+ | and | ||
+ | <math>x=\text{6 }</math> | ||
+ | into the quadratic equation (*) shows that we have solved the equation correctly. | ||
+ | |||
+ | |||
+ | <math>x=\text{1 }</math>: LHS | ||
+ | <math>=3\centerdot 1-2=1</math> | ||
+ | and RHS | ||
+ | <math>=\left( 2-1 \right)^{2}=1</math> | ||
+ | |||
+ | |||
+ | <math>x=\text{6 }</math>: LHS | ||
+ | <math>=3\centerdot 6-2=16</math> | ||
+ | and RHS | ||
+ | <math>=\left( 2-6 \right)^{2}=16</math> | ||
+ | |||
+ | |||
+ | Finally, we need to sort away possible false roots to the root equation by verifying the solutions. | ||
+ | |||
+ | |||
+ | <math>x=\text{1 }</math>: LHS | ||
+ | <math>=\sqrt{3\centerdot 1-2}=1</math> | ||
+ | and RHS | ||
+ | <math>=2-1=1</math> | ||
+ | |||
+ | |||
+ | <math>x=\text{6 }</math>: LHS | ||
+ | <math>=\sqrt{3\centerdot 6-2}=4</math> | ||
+ | and RHS = | ||
+ | <math>=2-6=-4</math> | ||
+ | |||
+ | This shows that the root equation has the solution | ||
+ | <math>x=\text{1}</math>. |
Version vom 10:54, 25. Sep. 2008
After squaring both sides, we obtain the equation
\displaystyle 3x-2=\left( 2-x \right)^{2}\quad \quad (*)
and if we expand the right-hand side and then collect gather the terms, we get
\displaystyle x^{2}-7x+6=0
Completing the square of the left-hand side, we obtain
\displaystyle \begin{align}
& x^{2}-7x+6=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+6 \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{24}{4} \\
& =\left( x-\frac{7}{2} \right)^{2}-\frac{25}{4} \\
\end{align}
which means that the equation can be written as
\displaystyle \left( x-\frac{7}{2} \right)^{2}=\frac{25}{4}
and the solutions are therefore
\displaystyle \begin{align}
& x=\frac{7}{2}+\sqrt{\frac{25}{4}=}\frac{7}{2}+\frac{5}{2}=\frac{12}{2}=6 \\
& x=\frac{7}{2}-\sqrt{\frac{25}{4}=}\frac{7}{2}-\frac{5}{2}=\frac{2}{2}=1 \\
\end{align}
EQ6
Substituting \displaystyle x=\text{1 } and \displaystyle x=\text{6 } into the quadratic equation (*) shows that we have solved the equation correctly.
\displaystyle x=\text{1 }: LHS
\displaystyle =3\centerdot 1-2=1
and RHS
\displaystyle =\left( 2-1 \right)^{2}=1
\displaystyle x=\text{6 }: LHS
\displaystyle =3\centerdot 6-2=16
and RHS
\displaystyle =\left( 2-6 \right)^{2}=16
Finally, we need to sort away possible false roots to the root equation by verifying the solutions.
\displaystyle x=\text{1 }: LHS
\displaystyle =\sqrt{3\centerdot 1-2}=1
and RHS
\displaystyle =2-1=1
\displaystyle x=\text{6 }: LHS
\displaystyle =\sqrt{3\centerdot 6-2}=4
and RHS =
\displaystyle =2-6=-4
This shows that the root equation has the solution \displaystyle x=\text{1}.