Processing Math: Done
Lösung 3.1:7a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 3.1:7a moved to Solution 3.1:7a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators, |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \frac{1}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\centerdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}=\frac{\sqrt{6}+\sqrt{5}}{\left( \sqrt{6} \right)^{2}-\left( \sqrt{5} \right)^{2}}=\frac{\sqrt{6}+\sqrt{5}}{6-5}=\sqrt{6}+\sqrt{5}, \\ | ||
+ | & \frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{\sqrt{7}-\sqrt{6}}\centerdot \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}=\frac{\sqrt{7}+\sqrt{6}}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{6} \right)^{2}}=\frac{\sqrt{7}+\sqrt{6}}{7-6}=\sqrt{7}+\sqrt{6}, \\ | ||
+ | & \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Now, we can subtract the terms and simplify the result, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}}=\sqrt{6}+\sqrt{5}-\left( \sqrt{7}+\sqrt{6} \right) \\ | ||
+ | & =\sqrt{6}+\sqrt{5}-\sqrt{7}-\sqrt{6}=\sqrt{5}-\sqrt{7}. \\ | ||
+ | \end{align}</math> |
Version vom 10:03, 23. Sep. 2008
First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,
6−
5=1
6−
5
6+
5
6+
5=
6+
5
6
2−
5
2=6−5
6+
5=
6+
5
1
7−
6=1
7−
6
7+
6
7+
6=
7+
6
7
2−
6
2=7−6
7+
6=
7+
6
Now, we can subtract the terms and simplify the result,
6−
5−1
7−
6=
6+
5−
7+
6
=
6+
5−
7−
6=
5−
7