Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.1:7a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:7a moved to Solution 3.1:7a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,
-
<center> [[Image:3_1_7a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \frac{1}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\centerdot \frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}=\frac{\sqrt{6}+\sqrt{5}}{\left( \sqrt{6} \right)^{2}-\left( \sqrt{5} \right)^{2}}=\frac{\sqrt{6}+\sqrt{5}}{6-5}=\sqrt{6}+\sqrt{5}, \\
 +
& \frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{\sqrt{7}-\sqrt{6}}\centerdot \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}=\frac{\sqrt{7}+\sqrt{6}}{\left( \sqrt{7} \right)^{2}-\left( \sqrt{6} \right)^{2}}=\frac{\sqrt{7}+\sqrt{6}}{7-6}=\sqrt{7}+\sqrt{6}, \\
 +
& \\
 +
\end{align}</math>
 +
 
 +
 
 +
Now, we can subtract the terms and simplify the result,
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{1}{\sqrt{6}-\sqrt{5}}-\frac{1}{\sqrt{7}-\sqrt{6}}=\sqrt{6}+\sqrt{5}-\left( \sqrt{7}+\sqrt{6} \right) \\
 +
& =\sqrt{6}+\sqrt{5}-\sqrt{7}-\sqrt{6}=\sqrt{5}-\sqrt{7}. \\
 +
\end{align}</math>

Version vom 10:03, 23. Sep. 2008

First, we multiply the tops and bottoms of the two terms by the conjugate of their respective denominators, so that there are no root signs left in the denominators,


165=1656+56+5=6+56252=656+5=6+5176=1767+67+6=7+67262=767+6=7+6


Now, we can subtract the terms and simplify the result,


165176=6+57+6=6+576=57