Lösung 3.1:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:3c moved to Solution 3.1:3c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by looking at the one part of the expression,
-
<center> [[Image:3_1_3c.gif]] </center>
+
<math>\sqrt{16}</math>. This root can be simplified since
-
{{NAVCONTENT_STOP}}
+
<math>16=4\centerdot 4=4^{2}</math>
 +
which gives that
 +
<math>\sqrt{16}=\sqrt{4^{2}}=4</math>
 +
and the whole expression becomes
 +
 
 +
 
 +
<math>\sqrt{16+\sqrt{16}}=\sqrt{16+4}=\sqrt{20}</math>
 +
 
 +
 
 +
Can
 +
<math>\sqrt{20}</math>
 +
be simplified? In order to answer this, we split
 +
<math>\text{2}0</math>
 +
up into integer factors,
 +
 
 +
 
 +
<math>20=2\centerdot 10=2\centerdot 2\centerdot 5=2^{2}\centerdot 5</math>
 +
 
 +
 
 +
and see that
 +
<math>\text{2}0\text{ }</math>
 +
contains the square
 +
<math>\text{2}^{\text{2}}</math>
 +
as a factor and can therefore be taken outside the root sign,
 +
 
 +
 
 +
<math>\sqrt{20}=\sqrt{2^{2}\centerdot 5}^{2}=2\sqrt{5}</math>

Version vom 12:59, 22. Sep. 2008

We start by looking at the one part of the expression, \displaystyle \sqrt{16}. This root can be simplified since \displaystyle 16=4\centerdot 4=4^{2} which gives that \displaystyle \sqrt{16}=\sqrt{4^{2}}=4 and the whole expression becomes


\displaystyle \sqrt{16+\sqrt{16}}=\sqrt{16+4}=\sqrt{20}


Can \displaystyle \sqrt{20} be simplified? In order to answer this, we split \displaystyle \text{2}0 up into integer factors,


\displaystyle 20=2\centerdot 10=2\centerdot 2\centerdot 5=2^{2}\centerdot 5


and see that \displaystyle \text{2}0\text{ } contains the square \displaystyle \text{2}^{\text{2}} as a factor and can therefore be taken outside the root sign,


\displaystyle \sqrt{20}=\sqrt{2^{2}\centerdot 5}^{2}=2\sqrt{5}