Lösung 2.3:7c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.3:7c moved to Solution 2.3:7c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we complete the square |
- | + | ||
- | {{ | + | |
+ | <math>x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}</math> | ||
+ | |||
+ | |||
+ | we see on the right-hand side that we can make the expression arbitrarily large simply by choosing | ||
+ | <math>x+\frac{1}{2}</math> | ||
+ | sufficiently large. Hence, there is no maximum value. |
Version vom 11:18, 21. Sep. 2008
If we complete the square
\displaystyle x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing
\displaystyle x+\frac{1}{2}
sufficiently large. Hence, there is no maximum value.