Lösung 2.3:7c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:7c moved to Solution 2.3:7c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we complete the square
-
<center> [[Image:2_3_7c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}</math>
 +
 
 +
 
 +
we see on the right-hand side that we can make the expression arbitrarily large simply by choosing
 +
<math>x+\frac{1}{2}</math>
 +
sufficiently large. Hence, there is no maximum value.

Version vom 11:18, 21. Sep. 2008

If we complete the square


\displaystyle x^{2}+x+1=\left( x+\frac{1}{2} \right)^{2}-\left( \frac{1}{2} \right)^{2}+1=\left( x+\frac{1}{2} \right)^{2}+\frac{3}{4}


we see on the right-hand side that we can make the expression arbitrarily large simply by choosing \displaystyle x+\frac{1}{2} sufficiently large. Hence, there is no maximum value.