Lösung 2.3:7b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:7b moved to Solution 2.3:7b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We rewrite the expression by completing the square: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & -x^{2}+3x-4=-\left( x^{2}-3x+4 \right)=-\left( \left( x-\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \right) \\ | ||
+ | & =-\left( \left( x-\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4} \right)=-\left( \left( x-\frac{3}{2} \right)^{2}+\frac{7}{4} \right)=-\left( x-\frac{3}{2} \right)^{2}-\frac{7}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Now, we see that the first term | ||
+ | <math>-\left( x-\frac{3}{2} \right)^{2}</math> | ||
+ | is a quadratic with a minus sign in front, so that term is always less than or equal to zero. This means that the polynomial's largest value is | ||
+ | <math>-{7}/{4}\;</math> | ||
+ | and that occurs when | ||
+ | <math>x-\frac{3}{2}=0</math>, i.e. | ||
+ | <math>x=\frac{3}{2}</math>. |
Version vom 11:14, 21. Sep. 2008
We rewrite the expression by completing the square:
\displaystyle \begin{align}
& -x^{2}+3x-4=-\left( x^{2}-3x+4 \right)=-\left( \left( x-\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \right) \\
& =-\left( \left( x-\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4} \right)=-\left( \left( x-\frac{3}{2} \right)^{2}+\frac{7}{4} \right)=-\left( x-\frac{3}{2} \right)^{2}-\frac{7}{4} \\
\end{align}
Now, we see that the first term
\displaystyle -\left( x-\frac{3}{2} \right)^{2}
is a quadratic with a minus sign in front, so that term is always less than or equal to zero. This means that the polynomial's largest value is
\displaystyle -{7}/{4}\;
and that occurs when
\displaystyle x-\frac{3}{2}=0, i.e.
\displaystyle x=\frac{3}{2}.