Lösung 2.3:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.3:2c moved to Solution 2.3:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We start by completing the square of the left-hand side: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & y^{2}+3y+4=\left( y+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \\ | ||
+ | & =\left( y+\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4}=\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The equation is then | ||
+ | |||
+ | |||
+ | <math>\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0</math> | ||
+ | |||
+ | The first term | ||
+ | <math>\left( y+\frac{3}{2} \right)^{2}</math> | ||
+ | is always greater than or equal to zero because it is a square and | ||
+ | <math>\frac{7}{4}</math> | ||
+ | is a positive number. This means that the left hand side cannot be zero, regardless of how | ||
+ | <math>y</math> | ||
+ | is chosen. The equation has no solution. |
Version vom 13:37, 20. Sep. 2008
We start by completing the square of the left-hand side:
\displaystyle \begin{align}
& y^{2}+3y+4=\left( y+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \\
& =\left( y+\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4}=\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4} \\
\end{align}
The equation is then
\displaystyle \left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0
The first term \displaystyle \left( y+\frac{3}{2} \right)^{2} is always greater than or equal to zero because it is a square and \displaystyle \frac{7}{4} is a positive number. This means that the left hand side cannot be zero, regardless of how \displaystyle y is chosen. The equation has no solution.