Lösung 2.3:2c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:2c moved to Solution 2.3:2c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We start by completing the square of the left-hand side:
-
<center> [[Image:2_3_2c.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& y^{2}+3y+4=\left( y+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \\
 +
& =\left( y+\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4}=\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4} \\
 +
\end{align}</math>
 +
 
 +
 
 +
The equation is then
 +
 
 +
 
 +
<math>\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0</math>
 +
 
 +
The first term
 +
<math>\left( y+\frac{3}{2} \right)^{2}</math>
 +
is always greater than or equal to zero because it is a square and
 +
<math>\frac{7}{4}</math>
 +
is a positive number. This means that the left hand side cannot be zero, regardless of how
 +
<math>y</math>
 +
is chosen. The equation has no solution.

Version vom 13:37, 20. Sep. 2008

We start by completing the square of the left-hand side:


\displaystyle \begin{align} & y^{2}+3y+4=\left( y+\frac{3}{2} \right)^{2}-\left( \frac{3}{2} \right)^{2}+4 \\ & =\left( y+\frac{3}{2} \right)^{2}-\frac{9}{4}+\frac{16}{4}=\left( y+\frac{3}{2} \right)^{2}+\frac{7}{4} \\ \end{align}


The equation is then


\displaystyle \left( y+\frac{3}{2} \right)^{2}+\frac{7}{4}=0

The first term \displaystyle \left( y+\frac{3}{2} \right)^{2} is always greater than or equal to zero because it is a square and \displaystyle \frac{7}{4} is a positive number. This means that the left hand side cannot be zero, regardless of how \displaystyle y is chosen. The equation has no solution.