Lösung 2.3:2b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:2b moved to Solution 2.3:2b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | The first step when we solve the second-degree equation is to complete the square on the left-hand side: |
- | < | + | |
- | {{ | + | |
+ | <math>y^{2}+2y-15=\left( y+1 \right)^{2}-1^{2}-15=\left( y+1 \right)^{2}-16.</math> | ||
+ | |||
+ | The equation can now be written as | ||
+ | |||
+ | |||
+ | <math>\left( y+1 \right)^{2}=16</math> | ||
+ | |||
+ | |||
+ | and has, after taking the square root, the solutions | ||
+ | |||
+ | |||
+ | <math>y+1=\sqrt{16}=4</math> | ||
+ | which gives | ||
+ | <math>y=-1+4=3</math> | ||
+ | |||
+ | |||
+ | <math>y+1=-\sqrt{16}=-4</math> | ||
+ | which gives | ||
+ | <math>y=-1-4=-5</math> | ||
+ | |||
+ | |||
+ | A quick check shows that | ||
+ | <math>y=-\text{5 }</math> | ||
+ | and | ||
+ | <math>y=\text{3 }</math> | ||
+ | satisfy the equation: | ||
+ | |||
+ | |||
+ | <math>y=-\text{5 }</math>: LHS= | ||
+ | <math>\left( -5 \right)^{2}+2\centerdot \left( -5 \right)-15=25-10-15=0</math> | ||
+ | = RHS | ||
+ | |||
+ | <math>y=\text{3 }</math>: LHS= | ||
+ | <math>3^{2}+2\centerdot 3-15=9+6-15=0</math> | ||
+ | = RHS |
Version vom 13:31, 20. Sep. 2008
The first step when we solve the second-degree equation is to complete the square on the left-hand side:
\displaystyle y^{2}+2y-15=\left( y+1 \right)^{2}-1^{2}-15=\left( y+1 \right)^{2}-16.
The equation can now be written as
\displaystyle \left( y+1 \right)^{2}=16
and has, after taking the square root, the solutions
\displaystyle y+1=\sqrt{16}=4
which gives
\displaystyle y=-1+4=3
\displaystyle y+1=-\sqrt{16}=-4
which gives
\displaystyle y=-1-4=-5
A quick check shows that
\displaystyle y=-\text{5 }
and
\displaystyle y=\text{3 }
satisfy the equation:
\displaystyle y=-\text{5 }: LHS=
\displaystyle \left( -5 \right)^{2}+2\centerdot \left( -5 \right)-15=25-10-15=0
= RHS
\displaystyle y=\text{3 }: LHS= \displaystyle 3^{2}+2\centerdot 3-15=9+6-15=0 = RHS