Lösung 2.3:1d
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:1d moved to Solution 2.3:1d: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We apply the standard formula for completing the square, |
- | < | + | |
- | {{ | + | |
+ | <math>x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math> | ||
+ | |||
+ | on our expression and this gives | ||
+ | |||
+ | |||
+ | <math>x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}</math> | ||
+ | |||
+ | The whole expression becomes | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\ | ||
+ | & =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | A quick check shows that we have calculated correctly. | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\ | ||
+ | & =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\ | ||
+ | \end{align}</math> |
Version vom 13:02, 20. Sep. 2008
We apply the standard formula for completing the square,
\displaystyle x^{2}+ax=\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}
on our expression and this gives
\displaystyle x^{2}+5x=\left( x+\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}
The whole expression becomes
\displaystyle \begin{align}
& x^{2}+5x+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+3=\left( x+\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{12}{4} \\
& =\left( x+\frac{5}{2} \right)^{2}+\frac{12-25}{4}=\left( x+\frac{5}{2} \right)^{2}-\frac{13}{4} \\
\end{align}
A quick check shows that we have calculated correctly.
\displaystyle \begin{align}
& \left( x+\frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+2\centerdot \frac{5}{2}\centerdot x+\left( \frac{5}{2} \right)^{2}-\frac{13}{4}=x^{2}+5x+\frac{25}{4}-\frac{13}{4} \\
& =x^{2}+5x+\frac{12}{4}=x^{2}+5x+3 \\
\end{align}