Lösung 2.3:1c
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:1c moved to Solution 2.3:1c: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | As always when completing the square, we focus on the quadratic and linear terms |
| - | < | + | <math>2x-x^{2}</math> |
| - | {{ | + | , which we also can write as |
| + | <math>-\left( x^{2}-2x \right)</math> | ||
| + | . If we neglect the minus sign, we can complete square of the expression | ||
| + | <math>2x-x^{2}</math> | ||
| + | by using the formula | ||
| + | |||
| + | |||
| + | <math>x^{2}-ax=\left( x-\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math> | ||
| + | |||
| + | |||
| + | and we obtain | ||
| + | |||
| + | |||
| + | <math>x^{2}-2x=\left( x-\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x-1 \right)^{2}-1</math> | ||
| + | |||
| + | |||
| + | This means that | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & 5+2x-x^{2}=5-\left( x^{2}-2x \right)=5-\left( \left( x-1 \right)^{2}-1 \right) \\ | ||
| + | & \\ | ||
| + | & =5-\left( x-1 \right)^{2}+1=6-\left( x-1 \right)^{2} \\ | ||
| + | & \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | A quick check shows that we have completed the square correctly.: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & 6-\left( x-1 \right)^{2}=6-\left( x^{2}-2x+1 \right)=6-x^{2}+2x-1 \\ | ||
| + | & \\ | ||
| + | & =5+2x-x^{2} \\ | ||
| + | & \\ | ||
| + | \end{align}</math> | ||
Version vom 11:19, 12. Sep. 2008
As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2} , which we also can write as \displaystyle -\left( x^{2}-2x \right) . If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula
\displaystyle x^{2}-ax=\left( x-\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}
and we obtain
\displaystyle x^{2}-2x=\left( x-\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x-1 \right)^{2}-1
This means that
\displaystyle \begin{align}
& 5+2x-x^{2}=5-\left( x^{2}-2x \right)=5-\left( \left( x-1 \right)^{2}-1 \right) \\
& \\
& =5-\left( x-1 \right)^{2}+1=6-\left( x-1 \right)^{2} \\
& \\
\end{align}
A quick check shows that we have completed the square correctly.:
\displaystyle \begin{align}
& 6-\left( x-1 \right)^{2}=6-\left( x^{2}-2x+1 \right)=6-x^{2}+2x-1 \\
& \\
& =5+2x-x^{2} \\
& \\
\end{align}
