Lösung 2.3:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 2.3:1a moved to Solution 2.3:1a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
If we consider the squaring rule
-
<center> [[Image:2_3_1a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left( x-a \right)^{2}=x^{2}-2ax+a^{2}</math>
 +
 
 +
and move
 +
<math>a^{2}</math>
 +
over to the left-hand side, we obtain the formula
 +
 
 +
 
 +
<math>\left( x-a \right)^{2}-a^{2}=x^{2}-2ax</math>
 +
 
 +
 
 +
<math></math>
 +
 
 +
 
 +
With the help of this formula, we can rewrite (complete the square of) a mixed expression
 +
<math>x^{2}-2ax</math>
 +
to a obtain a quadratic expression,
 +
<math>\left( x-a \right)^{2}-a^{2}</math>
 +
.
 +
 
 +
The expression
 +
<math>x^{2}-2x</math>
 +
corresponds to
 +
<math>a=1</math>
 +
in the formula above and thus
 +
 
 +
 
 +
<math>x^{2}-2x=\left( x-1 \right)^{2}-1</math>

Version vom 09:53, 12. Sep. 2008

If we consider the squaring rule


\displaystyle \left( x-a \right)^{2}=x^{2}-2ax+a^{2}

and move \displaystyle a^{2} over to the left-hand side, we obtain the formula


\displaystyle \left( x-a \right)^{2}-a^{2}=x^{2}-2ax


\displaystyle


With the help of this formula, we can rewrite (complete the square of) a mixed expression \displaystyle x^{2}-2ax to a obtain a quadratic expression, \displaystyle \left( x-a \right)^{2}-a^{2} .

The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus


\displaystyle x^{2}-2x=\left( x-1 \right)^{2}-1